This article explores nonlinear proportional plus integral (PI) feedback for controlling the position of an object held in an optical trap. In general, nonlinearities in the spatial dependence of the optical force complicate feedback control for optical traps. Nonlinear PI control has been shown to provide all of the benefits of integral control: disturbance rejection, servo tracking, and force estimation. The controller also linearizes the closed-loop system. More importantly, the nonlinear controller is shown to be equivalent to an estimator of the exogenous force. The ability of nonlinear PI control to lower the measurement SNR is evaluated and compared to the variational open-loop case. A simulation demonstrating the performance of the nonlinear PI control is presented.

References

1.
Bustamante
,
C.
,
Smith
,
S. B.
,
Liphardt
,
J.
, and
Smith
,
D.
, 2000,
“Single-Molecule Studies of DNA Mechanics
,”
Curr. Opin. Struct. Biol.
,
10
, pp.
279
285
.
2.
Michaelis
,
J.
,
Muschielok
,
A.
,
Andrecka
,
J.
,
Kuegel
,
W.
, and
Moffitt
,
J. R.
, 2009,
“DNA Based Molecular Motors
,”
Phys. Life. Rev.
,
6
(
4
), pp.
250
266
.
3.
Svoboda
,
K.
,
Schmidt
,
C. K.
,
Schnapp
,
B. J.
, and
Block
,
S. M.
, 1993,
“Direct Observation of Kinesin Stepping by Optical Trapping Interferometry
,”
Nature (London)
,
365
(6448), pp.
721
727
.
4.
Svoboda
,
K.
, and
Block
,
S. M.
, 1994,
“Biological Applications of Optical Forces
,”
Annu. Rev. Biophys. Biomol. Struct.
,
23
, pp.
247
285
.
5.
Cole
,
D. G.
, 2010,
“Improving Single-Molecule Experiments With Feedback Control of Optical Traps
,”
J. Dyn. Syst. Meas., Control
, Submitted.
6.
Moffitt
,
J. R.
,
Chemla
,
Y. R.
,
Izhaky
,
D.
, and
Bustamante
,
C.
, 2006,
“Differential Detection of Dual Traps Improves the Spatial Resolution of Optical Tweezers
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
24
), pp.
9006
9011
.
7.
Gussgard
,
R.
,
Lindmo
,
T.
, and
Brevik
,
I.
, 1992,
“Calculation of Trapping Force in a Strongly Forcused Laser Beam
,”
J. Opt. Soc. Am. B
,
9
(
10
), pp.
1922
1930
.
8.
Barton
,
J. P.
,
Alexander
,
D. R.
, and
Schaub
,
S. A.
, 1989,
“Theoretical Determination of Net Radiation Force and Torque for Spherical Particle Illuminated by a Focused Laser Beam
,”
J. Appl. Phys.
,
66
(
10
), pp.
4594
4602
.
9.
Ren
,
K. K.
,
Gréha
,
G.
, and
Gouesbet
,
G.
, 1994,
“Radiation Pressure Forces Exerted on a Particle Arbitrarily Located in a Gaussian Beam by Using the Generalized Lorenz-Mie Theory, and Associated Resonance Effects
,”
Opt. Commun.
,
108
, pp.
343
354
.
10.
Rohrbach
,
A.
, and
Stelzer
,
E. H. K.
, 2001,
“Optical Trapping of Dielectric Particles in Arbitrary Fields
,”
J. Opt. Soc. Am. A
,
18
(
4
), pp.
839
853
.
11.
Visscher
,
K.
, and
Block
,
S. M.
, 1998,
“Versatile Optical Traps With Feedback Control
,”
Methods Enzymol
,
298
, pp.
460
489
.
12.
Wright
,
R. A.
,
Karvaris
,
C.
, and
Kazantzis
,
N.
, 2001,
“Model-Based Synthesis of Nonlinear PI and PID Controllers
,”
AIChE J.
,
47
(
8
), pp.
1805
1818
.
13.
Meditch
,
J. S.
, 1969,
Stochastic Optimal Linear Estimation and Control
,
McGraw-Hill Book Co
, New York.
You do not currently have access to this content.