In this paper, a new discrete-time adaptive iterative learning control (AILC) approach is presented to deal with nonsector nonlinearities by incorporating a recursive least-squares algorithm with a nonlinear data weighted coefficient. This scheme is also extended as a d-iteration-ahead adaptive iterative learning predictive control to address for multiple inputs multiple outputs (MIMO) nonlinear systems with unknown input gains. A major distinct feature of the presented methods is that the global stability result is obtained through Lyapunov analysis without assuming any linear growth condition on the nonlinearities. Another distinct feature is that the pointwise convergence of the presented methods is achieved over a finite interval without requiring any identical conditions on the initial states and reference trajectory.

References

1.
Xu
,
J.-X.
, and
Hou
,
Z.-S.
, 2009, “
Notes on Data-Driven System Approaches
,”
Acta Automatica Sinica
,
35
(
6
): pp.
668
675
.
2.
Hou
,
Z. S.
, and
Huang
,
W. H.
, 1997, “
The Model-Free Learning Adaptive Control of a Class of SISO Nonlinear Systems
,” Proceedings of the American Control Conference,
IEEE
,
Albuquerque
, pp.
343
344
.
3.
Van Helvoort
,
J.
,
De Jager
,
B.
, and
Steinbuch
,
M.
, 2007, “
Direct Data-Driven Recursive Controller Unfalsification With Analytic Update
,”
Automatica
,
43
(
12
), pp.
2034
2046
.
4.
Zhang
,
Y. X.
, and
Liu
,
M.
, 2010, “
An Operating Parameters Setting Method Using Empirical Data for Slashing Process
,”
Int. J. Innov. Comput. Inf. Control
,
6
(
5
), pp.
2013
2024
.
5.
Sung
,
W.-T.
, and
Chen
,
C.-H.
, 2010, “
Parallel Data Fusion for an Industrial Automatic Monitoring System Using Radial Basis Function Networks
,”
Int. J. Innov. Comput. Inf. Control
,
6
(
6
), pp.
2523
2536
.
6.
Tamura
,
H.
, and
Koichi
,
T.
, 2008, “
Midpoint-Validation Method of Neural Networks for Pattern Classification Problems
,”
Int. J. Innov. Comput. Inf. Control
,
4
(
10
), pp.
2475
2482
.
7.
Fekih
,
A.
,
Xu
,
H.
, and
Chowdhury
,
F.
, 2007, “
Neural Networks Based System Identification Techniques for Model Based Fault Detection of Nonlinear Systems
,”
Int. J. Innov. Comput. Inf. Control
,
3
(
5
), pp.
1073
1085
.
8.
Mi
,
L.
, and
Takeda
,
F.
, 2007, “
Analysis on the Robustness of the Pressure-Based Individual Identification System Based on Neural Networks
,”
Int. J. Innov. Comput. Inf. Control
,
3
(
1
), pp.
97
110
.
9.
Arimoto
,
S.
,
Kawamura
,
S.
, and
Miyazaki
,
F.
, 1984, “
Bettering Operation of Robots by Learning
,”
J. Robotic Syst.
,
1
(
2
), pp.
123
140
.
10.
Saab
,
S. S.
, 1995, “
A Discrete-Time Learning Control Algorithm for a Class of Linear Time-Invariant Systems
,”
IEEE Trans. Autom. Control
,
40
(
6
), pp.
1138
1141
.
11.
Xu
,
J.-X.
, 1997, “
Analysis of Iterative Learning Control for a Class of Nonlinear Discrete-Time Systems
,”
Automatica
,
33
(
10
), pp.
1905
1907
.
12.
Sun
,
M.
, and
Wang
,
D.
, 2003, “
Initial Shift Issues on Discrete-Time Iterative Learning Control With System Relative Degree
,”
IEEE Trans. Autom. Control
,
48
(
1
), pp.
144
148
.
13.
Kuc
,
T. Y.
, and
Lee
,
J. S.
, 1991, “
An Adaptive Learning Control of Uncertain Robotic Systems
,” Proceedings of the IEEE Conference on Decision and Control, pp.
1206
1211
.
14.
Park
,
P. H.
,
Kuc
,
T. Y.
, and
Lee
,
J. S.
, 1996, “
Adaptive Learning Control of Uncertain Robotic Systems
,”
Int. J. Control
,
65
(
5
), pp.
725
744
.
15.
Choi
,
J. Y.
, and
Lee
,
J. S.
, 2000, “
Adaptive Iterative Learning Control of Uncertain Robotic Systems
,”
IEE Proc.-D: Control Theory Appl.
,
147
(
2
), pp.
217
223
.
16.
Xu
,
J.-X.
, and
Viswanathan
,
B.
, 2000, “
Adaptive Robust Iterative Learning Control With Dead Zone Scheme
,”
Automatica
,
36
, pp.
91
99
.
17.
Norrlöf
,
M.
, 2002, “
An Adaptive Iterative Learning Control Algorithm With Experiments on an Industrial Robot
,”
IEEE Trans. Robotics Autom.
,
18
(
2
), pp.
245
251
.
18.
Chien
,
C. J.
, and
Yao
,
C.-Y.
, 2004, “
Iterative Learning of Model Reference Adaptive Controller for Uncertain Nonlinear Systems With Only Output Measurement
,”
Automatica
,
40
, pp.
855
864
.
19.
Chi
,
R. H.
,
Hou
,
Z. S.
, and
Sui
,
S. L.
, 2007, “
Discrete-Time Adaptive Iterative Learning From Different Tracking Tasks With Variable Initial Conditions
,” Proceeding of the 26th Chinese Control Conference,
Zhangjiajie
,
Hunan
, pp.
791
795
.
20.
Chi
,
R. H.
,
Hou
,
Z. S.
,
Sui
,
S. L.
,
Yu
,
L.
, and
Yao
,
W. L.
, 2008, “
A New Adaptive Iterative Learning Control Motivated by Discrete-Time Adaptive Control
,”
Int. J. Innov. Comput. Inf. Control
,
4
(
6
), pp.
1267
1274
.
21.
Chi
,
R. H.
,
Hou
,
Z. S.
, and
Xu
,
J. X.
, 2008, “
Adaptive ILC for a Class of Discrete-Time Systems With Iteration-Varying Trajectory and Random Initial Condition
,”
Automatica
,
44
(
8
), pp.
2207
2213
.
22.
Goodwin
,
G. C.
, and
Sin
,
K. S.
, 1984,
Adaptive Filtering Prediction and Control
,
Prentice-Hall, Inc.
,
Englewood Cliffs, NJ
.
23.
Kanellakopoulos
,
I.
, 1994, “
A Discrete-Time Adaptive Nonlinear System
,”
IEEE Trans. Autom. Control
,
39
(
11
), pp.
2362
2365
.
You do not currently have access to this content.