We develop a mathematical model of a large-scale cracked horizontal axis wind turbine (HAWT) describing the flapping flexure of the flexible tower and blades. The proposed model has enough fidelity to be used in health monitoring applications. The equations of motion account for the effect of the applied aerodynamic forces, modeled using the blade element momentum (BEM) theory, and the location and shape of a crack introduced into one of the blades. We first examine the static response of the HAWT in presence of the crack, and then we formulate the eigenvalue problem and determine the natural frequencies and associated mode shapes. We show that both shape and location of the crack influence the first four natural frequencies. The dynamic response of the HAWT subjected to wind and gravity is obtained using a Galerkin procedure. We conduct a parametric analysis to investigate the influence of the crack on the eigenstructure and overall dynamics. The simulations depict that the first four natural frequencies are reduced as the crack size become more important. We also conclude that the tower root moment may be considered as potential indicators for health monitoring purposes.

References

1.
Lee
,
D.
,
Hodges
,
D.
, and
Patil
,
M.
,
2002
, “
Multi-Flexible-Body Dynamic Analysis of Horizontal Axis Wind Turbines
,”
Wind Energy
,
5
, pp.
281
300
.10.1002/we.66
2.
Murtagh
,
P.
,
Basu
,
B.
, and
Broderick
,
B.
,
2005
, “
Along-Wind Response of a Wind Turbine Tower With Blade Coupling Subjected to Rotationally Sampled Wind Loading
,”
Eng. Struct.
,
27
(
8
), pp.
1209
1219
.10.1016/j.engstruct.2005.03.004
3.
Chen
,
X.
,
Li
,
J.
, and
Chen
,
J.
,
2009
, “
Wind-Induced Response Analysis of a Wind Turbine Tower Including the Blade-Tower Coupling Effect
,”
J. Zhejiang Univ., Sci.
,
10
(
11
), pp.
1573
1580
.10.1631/jzus.A0820750
4.
Meng
,
F.
,
Pavel
,
M.
, and
van Tooren
,
M.
,
2008
, “
Aeroelastic Stability Analysis of Large Scale Horizontal Axis Wind Turbines Using Reduced Order System Identification Based on Flexible Nonlinear Multi-Body Dynamics
,”
Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit
.
5.
Santos
,
I.
,
Saracho
,
C.
,
Smith
,
J.
, and
Eiland
,
J.
,
2004
, “
Contribution to Experimental Validation of Linear and Non-Linear Dynamic Models for Representing Rotor-Blade Parametric Coupled Vibrations
,”
J. Sound Vib.
,
271
(
3–5
), pp.
883
904
.10.1016/S0022-460X(03)00758-2
6.
Hansen
,
M.
,
Sørensen
,
J.
,
Voutsinas
,
S.
,
Sørensen
,
N.
, and
Madsen
,
H.
,
2006
, “
State of the Art in Wind Turbine Aerodynamics and Aeroelasticity
,”
Prog. Aerosp. Sci.
,
42
(
4
), pp.
285
330
.10.1016/j.paerosci.2006.10.002
7.
Younsi
,
R.
,
El-Batanony
,
I.
,
Tritsch
,
J.
,
Naji
,
H.
, and
Landjerit
,
B.
,
2001
, “
Dynamic Study of a Wind Turbine Blade With Horizontal Axis
,”
Eur. J. Mech. A/Solids
,
20
, pp.
241
252
.10.1016/S0997-7538(00)01127-X
8.
Patil
,
M.
, and
Hodges
,
D.
,
2006
, “
Variable-Order Finite Elements for Nonlinear, Intrinsic, Mixed Beam Equations
,”
Proceedings of the 62nd Annual Forum and Technology Display of the American Helicopter Society International
, Vol.
62
, p.
601
.
9.
Bert
,
C.
, and
Malik
,
M.
,
1996
, “
Differential Quadrature Method in Computational Mechanics: A Review
,”
ASME Appl. Mech. Rev.
,
49
(1)
, pp.
1
28
.10.1115/1.3101882
10.
Hsu
,
M.
,
2004
, “
Nonlinear Dynamic Analysis of an Orthotropic Composite Rotor Blade
,”
J. Mar. Sci. Technol.
,
12
(
4
), pp.
247
255
.
11.
Kessentini
,
S.
,
Choura
,
S.
,
Najar
,
F.
, and
Franchek
,
M.
,
2010
, “
Modeling and Dynamics of a Horizontal Axis Wind Turbine
,”
J. Vib. Control
,
16
(
13
), pp.
2001
2021
.10.1177/1077546309350189
12.
Ghoshal
,
A.
,
Sundaresan
,
M.
,
Schulz
,
M.
, and
Frank Pai
,
P.
,
2000
, “
Structural Health Monitoring Techniques for Wind Turbine Blades
,”
J. Wind. Eng. Ind. Aerodyn.
,
85
(
3
), pp.
309
324
.10.1016/S0167-6105(99)00132-4
13.
Marin
,
J.
,
Barroso
,
A.
,
Paris
,
F.
, and
Canas
,
J.
,
2009
, “
Study of Fatigue Damage in Wind Turbine Blades
,”
Eng. Failure Anal.
,
16
(
2
), pp.
656
668
.10.1016/j.engfailanal.2008.02.005
14.
Ciang
,
C.
,
Lee
,
J.
, and
Bang
,
H.
,
2008
, “
Structural Health Monitoring for a Wind Turbine System: A Review of Damage Detection Methods
,”
Meas. Sci. Technol.
,
19
, p.
122001
.10.1088/0957-0233/19/12/122001
15.
Sundaresan
,
M.
,
Schulz
,
M.
, and
Ghoshal
,
A.
,
2002
, “
Structural Health Monitoring Static Test of a Wind Turbine Blade
,” National Renewable Energy Laboratory, Report No. NREL/SR-500-28719.
16.
Dolinski
,
L.
, and
Krawczuk
,
M.
,
2009
, “
Damage Detection in Turbine Wind Blades by Vibration Based Methods
,”
J. Phys.: Conf. Ser.
,
181
(
1
), p.
012086
.10.1088/1742-6596/181/1/012086
17.
Hameed
,
Z.
,
Hong
,
Y.
,
Cho
,
Y.
,
Ahn
,
S.
, and
Song
,
C.
,
2009
, “
Condition Monitoring and Fault Detection of Wind Turbines and Related Algorithms: A Review
,”
Renewable Sustainable Energy Rev.
,
13
(
1
), pp.
1
39
.10.1016/j.rser.2007.05.008
18.
Yu
,
T.
,
Han
,
Q.
,
Qin
,
Z.
, and
Wen
,
B.
,
2006
, “
Identification of Crack Location and Depth in Rotating Machinery Based on Artificial Neural Network
,”
Adv. Neural Netw.
,
3973
, pp.
982
990
.10.1007/11760191_144
19.
Johnson
,
J.
,
Hughes
,
S.
, and
van Dam
,
J.
,
2009
, “
A Stereo-Videogrammetry System for Monitoring Wind Turbine Blade Surfaces During Structural Testing
,”
ASME Early Career Tech. J.
,
8
(
1
), pp.
1
10
.
20.
Kim
,
H.
,
Kang
,
L.
,
Han
,
J.
, and
Bang
,
H.
,
2010
, “
Real-Time Shape Estimation With Fiber Optic Sensors Distributed in Rotor Blades
,”
European Wind Energy Conference and Exhibition (EWEC2010)
, Vol.
62
, p.
601
.
21.
Moriarty
,
P.
, and
Hansen
,
A.
,
2005
, “
Aerodyn Theory Manual
,”
National Renewable Energy Laboratory, Ohio State University
, Technical Report No. NREL/EL-500-36881.
22.
Reuss
,
R.
,
Hoffman
,
M.
, and
Gregorek
,
G.
,
1995
, “
Effects of Surface Roughness and Vortex Generators on the NACA 4415 Airfoil
,”
National Renewable Energy Laboratory, Ohio State University
, Technical Report No. NREL/TP-442-6472.
23.
Burton
,
T.
,
Sharpe
,
D.
,
Jenkins
,
N.
, and
Bossanyi
,
E.
,
2001
,
Handbook of Wind Energy
,
Wiley
,
New York
.
24.
Vestas,
2011
, V52-850, www.vestas.com
25.
Tomasiello
,
S.
,
1998
, “
Differential Quadrature Method: Application to Initial-Boundary-Value Problems
,”
J. Sound Vib.
,
218
(
4
), pp.
573
585
.10.1006/jsvi.1998.1833
You do not currently have access to this content.