Modeling and control of the gas exchange process in modern diesel engines is critical for the promotion and control of advanced combustion strategies. However, most modeling efforts to date use complex stand-alone simulation packages that are not easily integrated into, or amenable for the synthesis of, engine control systems. Simpler control-oriented models have been developed; however, in many cases, they do not directly capture the complete dynamic interaction of air handling system components and flows in multicylinder diesel engines with variable geometry turbocharging (VGT), high pressure exhaust gas recirculation (EGR), and flexible intake valve actuation. Flexibility in the valvetrain directly impacts the gas exchange process not only through the effect on volumetric efficiency but also through the combustion process and resulting exhaust gas enthalpy utilized to drive the turbomachinery. This paper describes a low-order, five state model of the air handling system for a multicylinder variable geometry turbocharged diesel engine with cooled EGR and flexible intake valve actuation, validated against 286 steady state and 62 transient engine operating points. The model utilizes engine speed, engine fueling, EGR valve position, VGT nozzle position, and intake valve closing (IVC) time as inputs to the model. The model outputs include calculation of the engine flows as well as the exhaust temperature exiting the cylinders. The gas exchange model captures the dynamic effects of the not only the standard air handling actuators (EGR valve position and VGT position) but also IVC timing, exercised over their useful operating ranges. The model's capabilities are enabled through the use of analytical functions to describe the performance of the turbocharger, eliminating the need to use look-up maps; a physically based control-oriented exhaust gas enthalpy submodel and a physically based volumetric efficiency submodel.

References

1.
Yang
,
X.
, and
Zhu
,
G. G.
,
2010
, “
A Mixed Mean-Value and Crank-Based Model of a Dual Stage Turbocharged SI Engine for Hardware-in-the-Loop Simulation
,”
Proceedings of the American Control Conference
.
2.
Yan
,
F.
, and
Wang
,
J.
,
2010
, “
In-Cylinder Oxygen Mass Fraction Cycle-by-Cycle Estimation via a Lyapunov-Based Observer Design
,”
Proceedings of the American Control Conference
.
3.
Plianos
,
A.
, and
Stobard
,
R.
,
2008
, “
Modeling and Control of Diesel Engines Equipped With a Two-Stage Turbo-System
,”
SAE
Technical Paper No. 2008-01-1018.10.4271/2008-01-1018
4.
Akihama
,
K.
,
Takatori
,
Y.
,
Inagaki
,
K.
,
Sasaki
,
S.
, and
Dean
,
A. M.
,
2001
, “
Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature
,”
SAE
Technical Paper No. 2001-01-0655.10.4271/2001-01-0655
5.
Alriksson
,
M.
, and
Denbratt
,
I.
,
2006
, “
Low Temperature Combustion in a Heavy Duty Diesel Engine Using High Levels of EGR
,”
SAE
Technical Paper No. 2006-01-0075.10.4271/2006-01-0075
6.
Stanton
,
D.
,
2005
, “
Analysis Led Design for Engine System Development to Meet US2010 Emissions Standards
,” Presentation at the Wisconsin Engine Research Center (ERC).
7.
Pickett
,
L.
, and
Siebers
,
D.
,
2006
, “
Soot Formation in Diesel Fuel Jets Near the Lift-off Length
,”
Int. J. Engine Res.
,
7
(2), pp.
103
130
.10.1243/146808705X57793
8.
Pickett
,
L.
,
Kook
,
S.
,
Persson
,
H.
, and
Andersson
,
O.
,
2009
, “
Diesel Fuel Jet Lift-off Stabilization in the Presence of Laser-Induced Plasma Ignition
,”
Proc. Combust. Inst.
,
32
(2), pp.
2793
2800
.10.1016/j.proci.2008.06.082
9.
Jankovic
,
M.
,
Jankovic
,
M.
, and
Kolmanovsky
,
I.
,
2000
, “
Constructive Lyapunov Control Design for Turbocharged Diesel Engines
,”
IEEE Trans. Control Syst. Technol.
,
8
(2), pp.
288
299
.10.1109/87.826800
10.
Jung
,
M.
, and
Glover
,
K.
,
2006
, “
Calibratable Linear Parameter-Varying Control of a Turbocharged Diesel Engine
,”
IEEE Trans. Control Syst. Technol.
,
14
(
1
), pp.
45
62
.10.1109/TCST.2005.860513
11.
Wang
,
J.
,
2008
, “
Hybrid Robust Air-Path Control for Diesel Engines Operating Conventional and Low Temperature Combustion Modes
,”
IEEE Trans. Control Syst. Technol.
,
16
(6), pp.
1138
1151
.10.1109/TCST.2008.917227
12.
Guzzella
,
L.
, and
Amstutz
,
A.
,
1998
, “
Control of Diesel Engines
,”
IEEE Control Syst. Mag.
,
18
(
5
), pp.
53
71
.10.1109/37.722253
13.
Eckerle
,
W.
, and
Stanton
,
D.
,
2006
, “
Analysis-Led Design Process for Cummins Engine Development
,”
THIESEL
.
14.
Kao
,
M.
, and
Moskwa
,
J.
,
1995
, “
Turbocharged Diesel Engine Modeling for Nonlinear Engine Control and State Estimation
,”
ASME J. Dyn. Syst., Meas., Control
,
117
(
1
), pp.
20
30
.10.1115/1.2798519
15.
He
,
Y.
,
2005
, “
Development and Validation of a 1D Model of a Turbocharged V6 Diesel Engine Operating Under Steady-State and Transient Conditions
,”
SAE
Technical Paper No. 2005-01-3857.10.4271/2005-01-3857
16.
He
,
Y.
,
Lin
,
C.-C.
, and
Gangopadhyay
,
A.
,
2006
, “
Integrated Simulation of the Engine and Control System of a Turbocharged Diesel Engine
,”
SAE
Technical Paper No. 2006-01-0439.10.4271/2006-01-0439
17.
Kulkarni
,
A.
,
Shaver
,
G. M.
,
Popuri
,
S.
,
Frazier
,
T. R.
, and
Stanton
,
D. W.
,
2009
, “
Computationally Efficient Whole-Engine Model of a Cummins 2007 Turbocharged Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
132
(
2
), p.
022803
.10.1115/1.3125316
18.
Morel
,
T.
,
Keribar
,
R.
,
Silvestri
,
J.
, and
Wahiduzzaman
,
S.
,
1999
, “
Integrated Engine/Vehicle Simulation and Control
,”
SAE
Technical Paper No. 1999-01-0907.
19.
Ciesla
,
C.
,
Keribar
,
R.
, and
Morel
,
T.
,
2000
, “
Engine/Powertrain/Vehicle Modeling Tool Applicable to All Stages of the Design Process
,”
SAE
Technical Paper No. 2000-01-0934.10.4271/2000-01-0934
20.
Modiyani
,
R.
,
Kocher
,
L.
,
Van Alstine
,
D. G.
,
Koeberlein
,
E.
,
Stricker
,
K.
,
Meckl
,
P.
, and
Shaver
,
G.
,
2011
, “
Effect of Intake Valve Closure Modulation on Effective Compression Ratio and Gas Exchange in Turbocharged Multi-Cylinder Engines Utilizing Egr
,”
Int. J. Eng. Res.
,
12
(
6
), pp.
617
631
.10.1177/1468087411415180
21.
Kolmanovsky
,
I. V.
,
Stefanopoulou
,
A. G.
,
Moraal
,
P. E.
, and
van Nieuwstadt
,
M.
,
1997
. “
Issues in Modeling and Control of Intake Flow in Variable Geometry Turbocharged Engines
,”
Proceedings of the 18th IFIP Conference on System Modeling and Optimization
.
22.
Ammann
,
M.
,
Fekete
,
N. P.
,
Guzzella
,
L.
, and
Glattfelder
,
A. H.
,
2003
, “
Model-Based Control of the VGT and EGR in a Turbocharged Common-Rail Diesel Engine: Theory and Passenger Car Implementation
,”
SAE
Technical Paper No. 2003-01-0357.10.4271/2003-01-0357
23.
Das
,
H.
, and
Dhinagar
,
S.
,
2008
, “
Airpath Modelling and Control for a Turbocharged Diesel Engine
,”
SAE
Technical Paper No. 2008-01-0999.10.4271/2008-01-0999
24.
Stefanopoulou
,
A. G.
,
Kolmanovsky
,
I.
, and
Freudenberg
,
J. S.
,
2000
, “
Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions
,”
IEEE Trans. Control Syst. Technol.
,
8
(
4
), pp.
733
745
.10.1109/87.852917
25.
Utkin
,
V. I.
,
Chang
,
H.-C.
,
Kolmanovsky
,
I.
, and
Cook
,
J.
,
2000
, “
Sliding Mode Control for Variable Geometry Trubocharged Diesel Engines
,”
Proceedings of the American Control Conference
, pp.
584
588
.
26.
Upadhyay
,
D.
,
Utkin
,
V. I.
, and
Rizzoni
,
G.
,
2002
, “
Multivariable Control Design for Intake Flow Regulation of a Diesel Engine Using Sliding Mode
,”
Proceedings of IFAC 15th Triennial World Congress
, pp.
1389
1394
.
27.
He
,
X.
, and
Durrett
,
R.
,
2008
, “
Late Intake Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level
,”
SAE
Technical Paper No. 2008-01-0637.10.4271/2008-01-0637
28.
Assanis
,
D. N.
,
Filipi
,
Z. S.
,
Fiveland
,
S. B.
, and
Syrimis
,
M.
,
2003
, “
A Predictive Ignition Delay Correlation Under Steady-State and Transient Operation of a Direct Injection Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
125
(2), pp.
450
457
.10.1115/1.1563238
29.
Kawanabe
,
H.
,
Ishiyama
,
T.
, and
Fujiwara
,
N.
,
2004
, “
Analysis of Premixed Charge Compression Ignition Combustion Using PDF Method With Multidimensional CFD
,”
SAE
Technical Paper No. 2004-01-1913.10.4271/2004-01-1913
30.
Kimura
,
S.
,
Aoki
,
O.
,
Kitahara
,
Y.
, and
Aiyoshizawa
,
E.
,
2001
, “
Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standards
,”
SAE
Technical Paper No. 2001-01-0200.10.4271/2001-01-0200
31.
Kocher
,
L.
,
Koeberlein
,
E.
,
Van Alstine
,
D. G.
,
Stricker
,
K.
, and
Shaver
,
G.
,
2012
, “
Physically-Based Volumetric Efficiency Model for Diesel Engines Utilizing Variable Intake Valve Actuation
,”
Int. J. Eng. Res.
,
13
(2), pp.
169
184
.10.1177/1468087411424378
32.
Canova
,
M.
,
Midlam-Mohler
,
S.
,
Guezennec
,
Y.
, and
Rizzoni
,
G.
,
2009
, “
Mean Value Modeling and Analysis of HCCI Diesel Engines With External Mixture Formation
,”
ASME J. Dyn. Syst. Meas. Control
,
131
(
1
), p.
011002
.10.1115/1.2977465
33.
Heywood
,
J.
,
1998
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
34.
Koeberlein
,
E.
,
Kocher
,
L.
,
Van Alstine
,
D.
,
Stricker
,
K.
, and
Shaver
,
G.
,
2011
, “
Control-Oriented Modeling of Exhaust Enthalpy for Engines Utilizing Valve Modulation
,”
Control Eng. Pract.
(submitted).
35.
Stricker
,
K.
,
Kocher
,
L.
,
Koeberlein
,
E.
,
Van Alstine
,
D. G.
, and
Shaver
,
G.
,
2011
, “
Turbocharger Map Reduction for Control-Oriented Modeling
,”
ASME J. Dyn. Syst., Meas., Control
(submitted).
36.
Lancefield
,
T.
, and
Methley
,
I.
,
2000
, “
The Application of Variable Event Valve Timing to a Modern Diesel Engine
,”
SAE
Technical Paper No. 2000-01-1229.10.4271/2000-01-1229
You do not currently have access to this content.