Limit cycle oscillations (LCOs) affect current fighter aircraft and are expected to be present on next generation fighter aircraft. Current efforts in control systems designed to suppress LCO behavior have either used a linear model, restricting the flight regime, require exact knowledge of the system dynamics, or require uncertainties in the system dynamics to be linear-in-the-parameters and only present in the torsional stiffness. Furthermore, the aerodynamic model used in prior research efforts neglects nonlinear effects. This paper presents the development of a controller consisting of a continuous robust integral of the sign of the error (RISE) feedback term with a neural network (NN) feedforward term to achieve asymptotic tracking of uncertainties that do not satisfy the linear-in-the-parameters assumption. Simulation results are presented to validate the performance of the developed controller.

References

1.
Beran
,
P. S.
,
Strganac
,
T. W.
,
Kim
,
K.
, and
Nichkawde
,
C.
,
2004
, “
Studies of Store-Induced Limit Cycle Oscillations Using a Model With Full System Nonlinearities
,”
Nonlinear Dyn.
,
37
(4), pp.
323
339
.10.1023/B:NODY.0000045544.96418.bf
2.
Bunton
,
R. W.
, and
Denegri
, Jr.,
C. M.
,
2000
, “
Limit Cycle Oscillation Characteristics of Fighter Aircraft
,”
J. Aircraft
,
37
(5), pp.
916
918
.10.2514/2.2690
3.
Block
,
J. J.
, and
Strganac
,
T. W.
,
1999
, “
Applied Active Control for a Nonlinear Aeroelastic Structure
,”
AIAA J. Guid. Contr. Dynam.
,
21
(6), pp.
838
845
.10.2514/2.4346
4.
Ko
,
J.
,
Strganac
,
T. W.
, and
Kurdila
,
A.
,
1998
, “
Stability and Control of a Structurally Nonlinear Aeroelastic System
,”
AIAA J. Guid. Contr. Dynam.
,
21
(5), pp.
718
725
.10.2514/2.4317
5.
Zhang
,
W.
, and
Ye
,
Z.
,
2007
, “
Control Law Design for Transonic Aeroservoelasticity
,”
Aerospace Sci. Technol.
,
11
(2–3), pp.
136
145
.10.1016/j.ast.2006.12.004
6.
Danowsky
,
B. P.
,
Thompson
,
P. M.
,
Farhat
,
C.
,
Lieu
,
T.
,
Harris
,
C.
, and
Lechniak
,
J.
,
2010
, “
Incorporation of Feedback Control Into a High-Fidelity Aeroservoelastic Fighter Aircraft Model
,”
J. Aircraft
,
47
(4), pp.
1274
1282
.10.2514/1.47119
7.
Thompson
,
P. M.
,
Danowsky
,
B. P.
,
Farhat
,
C.
,
Lieu
,
T.
,
Lechniak
,
J.
, and
Harris
,
C.
,
2011
, “
High-Fidelity Aeroservoelastic Predictive Analysis Capability Incorporating Rigid Body Dynamics
,”
AIAA
Paper No. 2011-6209.10.2514/6.2011-6209
8.
Cavagna
,
L.
,
Ricci
,
S.
, and
Scotti
,
A.
,
2009
, “
Active Aeroelastic Control Over a Four Control Surface Wing Model
,”
Aerospace Sci. Technol.
,
13
(7), pp.
374
382
.10.1016/j.ast.2009.06.009
9.
Prime
,
Z.
,
Cazzolato
,
B.
,
Doolan
,
C.
, and
Strganac
,
T.
,
2010
, “
Linear-Parameter-Varying Control of an Improved Three-Degree-of-Freedom Aeroelastic Model
,”
AIAA J. Guid. Contr. Dynam.
,
33
(2), pp.
615
618
.10.2514/1.45657
10.
Elhami
,
M. R.
, and
Narab
,
M. F.
,
2012
, “
Comparison of SDRE and SMC Control Approaches for Flutter Suppression in a Nonlinear Wing Section
,”
Proceedings of American Control Conference
, Montreal, QC, Canada, pp.
6148
6153
.
11.
Ko
,
J.
,
Strganac
,
T. W.
, and
Kurdila
,
A.
,
1999
, “
Adaptive Feedback Linearization for the Control of a Typical Wing Section With Structural Nonlinearity
,”
Nonlinear Dyn.
,
18
(3), pp.
289
301
.10.1023/A:1008323629064
12.
Strganac
,
T. W.
,
Ko
,
J.
,
Thompson
,
D. E.
, and
Kurdila
,
A.
,
2000
, “
Identification and Control of Limit Cycle Oscillations in Aeroelastic Systems
,”
AIAA J. Guid. Contr. Dynam.
,
23
(6), pp.
1127
1133
.10.2514/2.4664
13.
Ko
,
J.
,
Strganac
,
T. W.
,
Junkins
,
J. L.
,
Akella
,
M. R.
, and
Kurdila
,
A.
,
2002
, “
Structured Model Reference Adaptive Control for a Wing Section With Structural Nonlinearity
,”
J. Vib. Control
,
8
(5), pp.
553
573
.10.1177/107754602023710
14.
Platanitis
,
G.
, and
Strganac
,
T. W.
,
2004
, “
Control of a Nonlinear Wing Section Using Leading- and Trailing-Edge Surfaces
,”
AIAA J. Guid. Contr. Dynam.
,
27
(1), pp.
52
58
.10.2514/1.9284
15.
Bialy
,
B. J.
,
Pasiliao
,
C. L.
,
Dinh
,
H. T.
, and
Dixon
,
W. E.
,
2012
, “
Lyapunov-Based Tracking of Store-Induced Limit Cycle Oscillations in an Aeroelastic System
,”
ASME
Paper No. DSCC2012-MOVIC2012-8662.10.1115/DSCC2012-MOVIC2012-8662
16.
Patre
,
P. M.
,
MacKunis
,
W.
,
Kaiser
,
K.
, and
Dixon
,
W. E.
,
2008
, “
Asymptotic Tracking for Uncertain Dynamic Systems Via a Multilayer Neural Network Feedforward and RISE Feedback Control Structure
,”
IEEE Trans. Automat. Control
,
53
(
9
), pp.
2180
2185
.10.1109/TAC.2008.930200
17.
Patre
,
P.
,
Mackunis
,
W.
,
Dupree
,
K.
, and
Dixon
,
W. E.
,
2011
, “
Modular Adaptive Control of Uncertain Euler-Lagrange Systems With Additive Disturbances
,”
IEEE
Trans. Automat. Control,
56
(
1
), pp.
155
160
.10.1109/TAC.2010.2081770
18.
MacKunis
,
W.
,
Patre
,
P.
,
Kaiser
,
M.
, and
Dixon
,
W. E.
,
2010
, “
Asymptotic Tracking for Aircraft Via Robust and Adaptive Dynamic Inversion Methods
,”
IEEE Trans. Control Syst. Technol.
,
18
(
6
), pp.
1448
1456
.10.1109/TCST.2009.2039572
19.
Bialy
,
B.
,
Andrews
,
L.
,
Curtis
,
J. W.
, and
Dixon
,
W. E.
, 2014, “
Saturated Tracking Control of Store-Induced Limit Cycle Oscillations
,”
AIAA
J. Guid. Control Dyn.
37
(4), pp. 1316–1323.10.2514/1.G000325
20.
Thompson
, Jr.,
D. E.
, and
Strganac
,
T. W.
,
2005
, “
Nonlinear Analysis of Store-Induced Limit Cycle Oscillations
,”
Nonlinear Dyn.
,
39
(1–2), pp.
159
178
.10.1007/s11071-005-1924-y
21.
Krstic
,
M.
,
Kokotovic
,
P. V.
, and
Kanellakopoulos
,
I.
,
1995
,
Nonlinear and Adaptive Control Design
,
John Wiley & Sons
, New York.
You do not currently have access to this content.