This paper proposes a method to find the preferable workspace for fatigue life improvement of robots with flexible joints under percussive riveting. The development is motivated by the growing interest in using industrial robots to replace human operators for percussive riveting operations in aerospace assembly. A most important characteristic of robotic percussive riveting is the repetitive impacts generated by the percussive rivet gun. These impacts induce forced vibrations to the robot, and the joint shaft fatigue due to the resulting stress cycles must be prevented. This paper aims at finding the preferable workspace for fatigue life improvement of the robot, that is, the end-effector positions where the joint stresses are below the endurance limit. For this purpose, a structural dynamic model is established for the robot under percussive riveting. Then, an approximate analytical solution is formulated for the torsional stresses of the robot joints. Once the distributions of the stresses are obtained over the workspace, the preferable workspace for fatigue life improvement can be found by comparing the stresses with the endurance limit. Simulation studies are carried out for a mobile robot under percussive riveting. It is found that the dynamic response of the robot to the percussive riveting varies dramatically over the workspace. The method is then used to obtain the preferable positions of the robot end-effector for fatigue resistance.

References

1.
Nof
,
S. Y.
,
1999
,
Handbook of Industrial Robotics
, 2nd ed.,
Wiley
,
New York
.
2.
The Boeing Company
,
2014
, “
Boeing: A Futuristic View of the 777 Fuselage Build
,” The Boeing Company, Chicago, IL, accessed Oct. 14, 2015, http://www.boeing.com/features/2014/07/bca-777-fuselage-07-14-14.page
3.
Campbell
,
F. C.
,
2006
,
Manufacturing Technology for Aerospace Structural Materials
,
Elsevier
,
New York
, pp.
495
537
.
4.
Cherng
,
J. G.
,
Eksioglu
,
M.
, and
Kizilaslan
,
K.
,
2009
, “
Vibration Reduction of Pneumatic Percussive Rivet Tools: Mechanical and Ergonomic Re-Design Approaches
,”
Appl. Ergon.
,
40
(
2
), pp.
256
266
.
5.
Zieve
,
P. B.
,
2013
, “
Frame-Clip Riveting End Effector
,”
SAE 2013
AeroTech Congress & Exhibition, Montreal, QC, Canada, Sept. 24–26, SAE Technical Paper No. 2013-01-2079.
6.
Xi
,
F.
,
Lin
,
Y.
, and
Tu
,
X.
,
2013
, “
Framework on Robotic Percussive Riveting for Aircraft Assembly Automation
,”
Adv. Manuf.
,
1
(
2
), pp.
112
122
.
7.
Jayaweera
,
N.
, and
Webb
,
P.
,
2007
, “
Adaptive Robotic Assembly of Compliant Aero-Structure Components
,”
Rob. Comput.-Integr. Manuf.
,
23
(
2
), pp.
180
194
.
8.
Kadam
,
R. S.
,
2006
, “
Vibration Characterization and Numerical Modeling of a Pneumatic Impact Hammer
,”
M.S. thesis
, Virginia Polytechnic Institute and State University, Blacksburg, VA.
9.
Bloxsom
,
W. A.
,
2003
, “
Modeling of the Reciprocating, Pneumatic Impact Hammer
,” Ph.D. thesis, University of Nevada, Reno, NV.
10.
Johnson
,
T. J.
,
Manning
,
R.
,
Adams
,
D. E.
,
Sterkenburg
,
R.
, and
Jata
,
K.
,
2006
, “
Diagnostics of Tool-Part Interactions During Riveting on an Aluminum Aircraft Fuselage
,”
J. Aircr.
,
43
(
3
), pp.
779
786
.
11.
Li
,
Y.
,
Xi
,
F.
, and
Behdinan
,
K.
,
2010
, “
Dynamic Modeling and Simulation of Percussive Impact Riveting for Robotic Automation
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
2
), p.
021011
.
12.
Li
,
Y.
,
Xi
,
F.
,
Mohamed
,
P. R.
, and
Behdinan
,
K.
,
2011
, “
Dynamic Analysis for Robotic Integration of Tooling Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
4
), p.
041002
.
13.
Garron
,
C.-D.
,
1995
, “
Prolonging a Robot's Life Expectancy
,”
Ind. Rob.: Int. J.
,
22
(
2
), pp.
16
17
.
14.
Cui
,
W.
,
2002
, “
A State-of-the-Art Review on Fatigue Life Prediction Methods for Metal Structures
,”
J. Mar. Sci. Technol.
,
7
(
1
), pp.
43
56
.
15.
Stephens
,
R. I.
,
Fatemi
,
A.
,
Stephens
,
R. R.
, and
Fuchs
,
H. O.
,
2001
,
Metal Fatigue in Engineering
, 2nd ed.,
Wiley
,
New York
.
16.
Dwivedy
,
S. K.
, and
Eberhard
,
P.
,
2006
, “
Dynamic Analysis of Flexible Manipulators, a Literature Review
,”
Mech. Mach. Theory
,
41
(
7
), pp.
749
777
.
17.
Benosman
,
M.
, and
Le Vey
,
G.
,
2004
, “
Control of Flexible Manipulators: A Survey
,”
Robotica
,
22
(
5
), pp.
533
545
.
18.
Rahimi
,
H. N.
, and
Nazemizadeh
,
M.
,
2014
, “
Dynamic Analysis and Intelligent Control Techniques for Flexible Manipulators: A Review
,”
Adv. Rob.
,
28
(
2
), pp.
63
76
.
19.
Siciliano
,
B.
, and
Khatib
,
O.
,
2008
,
Springer Handbook of Robotics
,
Springer-Verlag
,
Berlin
, pp.
229
244
, 963–986.
20.
Dumitru
,
I.
,
Marsavina
,
L.
, and
Faur
,
N.
,
2007
, “
Experimental Study of Torsional Impact Fatigue of Shafts
,”
J. Sound Vib.
,
308
(
3–5
), pp.
479
488
.
21.
Budynas
,
R.
, and
Nisbett
,
K.
,
2008
,
Shigley's Mechanical Engineering Design
, 8th ed.,
McGraw-Hill
, New
York
, pp.
260
342
.
22.
Behi
,
F.
, and
Tesar
,
D.
,
1991
, “
Parametric Identification for Industrial Manipulators Using Experimental Modal Analysis
,”
IEEE Trans. Rob. Autom.
,
7
(
5
), pp.
642
652
.
23.
Nie
,
S.
,
Li
,
Y.
,
Guo
,
S.
,
Song
,
T.
, and
Xi
,
F.
,
2016
, “
Modeling and Simulation for Fatigue Life Analysis of Robots With Flexible Joints Under Percussive Impact Forces
,”
Rob. Comput.-Integr. Manuf.
,
37
(
1
), pp.
292
301
.
You do not currently have access to this content.