Abstract

A force-controlled pneumatic actuator with long connecting tubes is a well-accepted solution to develop magnetic resonance imaging (MRI)-compatible force control applications. Such an actuator represents an uncertain, second-order, nonlinear system with input delay. The integral sliding mode control, because of guaranteed robustness against matched uncertainties throughout the system response, provides a favorable option to design a robust controller for the actuator. However, if the controller is based on a linear integral sliding surface (LISS), the response of the actuator overshoots, especially when there are large initial errors. Minimizing overshoot results in a smaller controller bandwidth and a slower system response. This paper presents a novel nonlinear integral sliding surface (NLISS) for a sliding mode controller to improve the transient response of the actuator. The proposed surface is a LISS augmented by a nonlinear function of tracking error and does not have a reaching phase when there are initial errors and even multiple steps in the desired trajectory. The surface enables the integral sliding mode controller to offer variable damping, which changes from low to high as the transient error approaches small values and vice versa. Simulation studies and experimental results show that the controller based on the proposed sliding surface successfully eliminates the overshoot without compromising the controller bandwidth, rise, and settling times. For performance evaluation, the controller parameters are tuned using the globalized and bounded Nelder–Mead (GBNM) algorithm with deterministic restarts. The study also establishes the asymptotic stability of the controller based on the proposed sliding surface using Lyapunov's stability criterion.

References

1.
Astrakas
,
L. G.
,
Naqvi
,
S. H.
,
Kateb
,
B.
, and
Tzika
,
A. A.
,
2012
, “
Functional MRI Using Robotic MRI-Compatible Devices for Monitoring Rehabilitation From Chronic Stroke in the Molecular Medicine Era
,”
Int. J. Mol. Med.
,
29
(
6
), pp.
963
973
.10.3892/ijmm.2012.942
2.
Chapuis
,
D.
,
Gassert
,
R.
,
Burdet
,
E.
, and
Bleuler
,
H.
,
2008
, “
A Hybrid Ultrasonic Motor and Electrorheological Fluid Clutch Actuator for Force-Feedback in MRI/fMRI
,”
30th
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Vancouver, BC, Canada, Aug. 20–25, pp.
3438
3442
.10.1109/IEMBS.2008.4649945
3.
Sergi
,
F.
,
Erwin
,
A. C.
, and
OMalley
,
M. K.
,
2015
, “
Interaction Control Capabilities of an MR-Compatible Compliant Actuator for Wrist Sensorimotor Protocols During fMRI
,”
IEEE/ASME Trans. Mechatronics
,
20
(
6
), pp.
2678
2690
.10.1109/TMECH.2015.2389222
4.
Vigaru
,
B.
,
Sulzer
,
J.
, and
Gassert
,
R.
,
2016
, “
Design and Evaluation of a Cable-Driven fMRI-Compatible Haptic Interface to Investigate Precision Grip Control
,”
IEEE Trans. Haptics
,
9
(
1
), pp.
20
32
.10.1109/TOH.2015.2485201
5.
Elhawary
,
H.
,
Zivanovic
,
A.
,
Davies
,
B.
, and
Lamperth
,
M.
,
2006
, “
A Review of Magnetic Resonance Imaging Compatible Manipulators in Surgery
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
220
(
3
), pp.
413
424
.10.1243/09544119JEIM73
6.
Yu
,
N.
,
Hollnagel
,
C.
,
Blickenstorfer
,
A.
,
Kollias
,
S. S.
, and
Riener
,
R.
,
2008
, “
Comparison of MRI-Compatible Mechatronic Systems With Hydrodynamic and Pneumatic Actuation
,”
IEEE/ASME Trans. Mechatronics
,
13
(
3
), pp.
268
277
.10.1109/tmech.2008.924041
7.
Shtessel
,
Y.
,
Edwards
,
C.
,
Fridman
,
L.
, and
Levant
,
A.
,
2014
,
Sliding Mode Control and Observations
,
Springer
,
New York
.
8.
Turkseven
,
M.
, and
Ueda
,
J.
,
2017
, “
An Asymptotically Stable Pressure Observer Based on Load and Displacement Sensing for Pneumatic Actuators With Long Transmission Lines
,”
IEEE/ASME Trans. Mechatronics
,
22
(
2
), pp.
681
692
.10.1109/TMECH.2016.2582222
9.
Yang
,
B.
,
Tan
,
U. X.
,
McMillan
,
A. B.
,
Gullapalli
,
R.
, and
Desai
,
J. P.
,
2011
, “
Design and Control of a 1-DOF MRI-Compatible Pneumatically Actuated Robot With Long Transmission Lines
,”
IEEE/ASME Trans. Mechatronics
,
16
(
6
), pp.
1040
1048
.10.1109/TMECH.2010.2071393
10.
Richer
,
E.
, and
Hurmuzlu
,
Y.
,
2000
, “
A High Performance Pneumatic Force Actuator System—Part II: Nonlinear Controller Design
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
3
), pp.
426
434
.10.1115/1.1286366
11.
Richer
,
E.
, and
Hurmuzlu
,
Y.
,
2000
, “
A High Performance Pneumatic Force Actuator System—Part I: Nonlinear Mathematical Model
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
3
), pp.
416
425
.10.1115/1.1286336
12.
Yu
,
N.
,
Murr
,
W.
,
Blickenstorfer
,
A.
,
Kollias
,
S.
, and
Riener
,
R.
,
2007
, “
An fMRI Compatible Haptic Interface With Pneumatic Actuation
,”
IEEE
International Conference on Rehabilitation Robotics
, Noordwijk, The Netherlands, June 13, pp.
714
720
.10.1109/ICORR.2007.4428504
13.
Hamayun
,
M. T.
,
Edwards
,
C.
, and
Alwi
,
H.
,
2016
,
Fault Tolerant Control Schemes Using Integral Sliding Modes
,
Springer
,
Cham, Switzerland
.
14.
Matthews
,
G. P.
, and
DeCarlo
,
R. A.
,
1988
, “
Decentralized Tracking for a Class of Interconnected Nonlinear Systems Using Variable Structure Control
,”
Automatica
,
24
(
2
), pp.
187
193
.10.1016/0005-1098(88)90027-1
15.
Utkin
,
V.
, and
Shi
,
J.
,
1996
, “
Integral Sliding Mode in Systems Operating Under Uncertainty Conditions
,”
IEEE
International Conference on Decision and Control
, Kobe, Japan, Dec. 13, pp.
4591
4596
.10.1109/CDC.1996.577594
16.
Wang
,
J. D.
,
Lee
,
T. L.
, and
Juang
,
Y. T.
,
1996
, “
New Methods to Design an Integral Variable Structure Controller
,”
IEEE Trans. Autom. Control
,
41
(
1
), pp.
140
143
.10.1109/9.481620
17.
Utkin
,
V.
,
Guldner
,
J.
, and
Shi
,
J.
,
1999
,
Sliding Mode Control in Electromechanical Systems
,
Taylor and Francis
,
London
.
18.
Xu
,
J.
,
Pan
,
Y.
, and
Lee
,
T.
,
2003
, “
Analysis and Design of Integral Sliding Mode Control Based on Lyapunov's Direct Method
,”
American Control Conference
, Denver, CO, June 4, pp.
192
196
.10.1109/ACC.2003.1238936
19.
Cao
,
W. J.
, and
Xu
,
J. X.
,
2004
, “
Nonlinear Integral-Type Sliding Surface for Both Matched and Unmatched Uncertain Systems
,”
IEEE Trans. Autom. Control
,
49
(
8
), pp.
1355
1360
.10.1109/TAC.2004.832658
20.
Castaños
,
F.
, and
Fridman
,
L.
,
2006
, “
Analysis and Design of Integral Sliding Manifolds for Systems With Unmatched Perturbations
,”
IEEE Trans. Autom. Control
,
51
(
5
), pp.
853
858
.10.1109/TAC.2006.875008
21.
Gao
,
Z.
, and
Liao
,
X.
,
2013
, “
Integral Sliding Mode Control for Fractional-Order Systems With Mismatched Uncertainties
,”
Nonlinear Dyn.
,
72
(
1–2
), pp.
27
35
.10.1007/s11071-012-0687-5
22.
Lin
,
Z.
,
Pachter
,
M.
, and
Banda
,
S.
,
1998
, “
Toward Improvement of Tracking Performance Nonlinear Feedback for Linear Systems
,”
Int. J. Control
,
70
(
1
), pp.
1
11
.10.1080/002071798222433
23.
Turner
,
M. C.
,
Postlethwaite
,
I.
, and
Walker
,
D. J.
,
2000
, “
Non-Linear Tracking Control for Multivariable Constrained Input Linear Systems
,”
Int. J. Control
,
73
(
12
), pp.
1160
1172
.10.1080/002071700414248
24.
Chen
,
B. M.
,
Lee
,
T. H.
,
Peng
,
K.
, and
Venkataramanan
,
V.
,
2003
, “
Composite Nonlinear Feedback Control for Linear Systems With Input Saturation: Theory and an Application
,”
IEEE Trans. Autom. Control
,
48
(
3
), pp.
427
439
.10.1109/TAC.2003.809148
25.
Venkataramanan
,
V.
,
Peng
,
K.
,
Chen
,
B. M.
, and
Lee
,
T. H.
,
2003
, “
Discrete-Time Composite Nonlinear Feedback Control With an Application in Design of a Hard Disk Drive Servo System
,”
IEEE Trans. Control Syst. Technol.
,
11
(
1
), pp.
16
23
.10.1109/TCST.2002.806437
26.
Turner
,
M. C.
, and
Postlethwaite
,
I.
,
2004
, “
Nonlinear Regulation in Constrained Input Discrete-Time Linear Systems
,”
Int. J. Control
,
77
(
15
), pp.
1330
1342
.10.1080/0020717042000297199
27.
Bandyopadhyay
,
B.
, and
Fulwani
,
D.
,
2009
, “
High-Performance Tracking Controller for Discrete Plant Using Nonlinear Sliding Surface
,”
IEEE Trans. Ind. Electron.
,
56
(
9
), pp.
3628
3637
.10.1109/TIE.2008.2007984
28.
Bandyopadhyay
,
B.
,
Deepak
,
F.
,
Postlethwaite
,
I.
, and
Turner
,
M. C.
,
2010
, “
A Nonlinear Sliding Surface to Improve Performance of a Discrete-Time Input-Delay System
,”
Int. J. Control
,
83
(
9
), pp.
1895
1906
.10.1080/00207179.2010.501384
29.
Khalick Mohammad
,
A. M. A. E.
,
Uchiyama
,
N.
, and
Sano
,
S.
,
2015
, “
Energy Saving in Feed Drive Systems Using Sliding-Mode-Based Contouring Control With a Nonlinear Sliding Surface
,”
IEEE/ASME Trans. Mechatronics
,
20
(
2
), pp.
572
579
.10.1109/TMECH.2013.2296698
30.
Ripamonti
,
F.
,
Orsini
,
L.
, and
Resta
,
F.
,
2017
, “
A Nonlinear Sliding Surface in Sliding Mode Control to Reduce Vibrations of a Three-Link Flexible Manipulator
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051005
.10.1115/1.4036502
31.
Butt
,
K.
,
Rahman
,
R. A.
,
Sepehri
,
N.
, and
Filizadeh
,
S.
,
2017
, “
Globalized and Bounded Nelder-Mead Algorithm With Deterministic Restarts for Tuning Controller Parameters: Method and Application
,”
Optimal Control Appl. Methods
,
38
(
6
), pp.
1042
1055
.10.1002/oca.2311
32.
Butt
,
K.
, and
Sepehri
,
N.
,
2018
, “
Model-Free Online Tuning of Controller Parameters Using a Globalized Local Search Algorithm
,”
Optimal Control Appl. Methods
,
39
(
5
), pp.
1750
1765
.10.1002/oca.2439
33.
Slotine
,
J. J.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.