Axial piston pumps with variable volumetric displacement are often used to control flow and pressure in hydraulic systems. The displacement control mechanism in these pumps occupies significant space and accounts for significant cost in the pump design. Fixed displacement pumps have lower cost and a more compact design but suffer from a significant energy consumption disadvantage due to the need to control flow and pressure by throttling flow and bypassing unused flow to pressures below the discharge pressure. An inlet metering valve-controlled pump marks a recent development in pumping technology for hydraulic systems. In this design, an inlet metering valve restricts inlet flow reducing inlet pressure so that the specific volume of the fluid is increased as it enters a fixed displacement pump. By altering the specific volume of the working fluid, the inlet metering valve permits precise control over the pump discharge flow. This paper presents a theoretical model for inlet metered pump efficiency. The work considers additional sources of energy loss unique to the inlet metering system. Experimental results associated with inlet metered pump efficiency are presented. A comparison of the theoretical model and the experimental results is also included. It is determined that the current efficiency model accurately predicts efficiencies determined using experimental data.

References

1.
Wilson
,
W. E.
,
1950
,
Positive Displacement Pumps and Fluid Motors
,
Pitman Publishing Corporation
,
New York
.
2.
Thoma
,
J.
,
1969
, “
Mathematical Models and Effective Performance of Hydrostatic Machines and Transmissions
,”
Hydraulic Pneumatic Power
,
23
, pp.
642
651
.
3.
Zeiger
,
G.
, and
Aker
,
A.
, and
1985
, “
Torque on the Swashplate of an Axial Piston Pump
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
3
), pp.
220
226
.
4.
Lin
,
S. J.
,
Aker
,
A.
, and
Zeiger
,
G.
,
1985
, “
The Effect of Oil Entrapment in an Axial Piston Pump
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
4
), pp.
246
251
.
5.
Manring
,
N. D.
, and
Yihong
,
Z.
,
2001
, “
The Improved Volumetric-Efficiency of an Axial-Piston Pump Utilizing a Trapped-Volume Design
,”
ASME J. Dyn. Syst., Meas., Control
,
123
(3), pp.
479
487
.
6.
Shi
,
Z.
,
Parker
,
G.
, and
Granstrom
,
J.
,
2010
, “
Kinematic Analysis of a Swash-Plate Controlled Variable Displacement Axial-Piston Pump With a Conical Barrel Assembly
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(1), p. 011002.
7.
Manring
,
N. D.
,
Mehta
,
V. S.
,
Nelson
,
B. E.
,
Graf
,
K. J.
, and
Kuehn
,
J. L.
,
2014
, “
Scaling the Speed Limitations for Axial-Piston Swash-Plate Type Hydrostatic Machines
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
3
), p.
031004
.
8.
Manring
,
N. D.
,
2016
, “
Mapping the Efficiency for a Hydrostatic Transmission
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
3
), p.
031004
.
9.
Tomlinson
,
S. P.
, and
Burrows
,
C. R.
,
1992
, “
Achieving a Variable Flow Supply by Controlled Unloading of a Fixed-Displacement Pump
,”
ASME J. Dyn. Syst., Meas., Control
,
114
(
1
), pp.
166
171
.
10.
Zhang
,
H.
,
2014
, “
Cavitation Effect to the Hydraulic Piston Pump Flow Pulsation
,”
Appl. Mech. Mater.
,
599-601
, pp.
230
236
.
11.
Eisenberg
,
P.
,
1950
, “
On the Mechanism and Prevention of Cavitation
,” Navy Department, Washington, DC, David Taylor Model Basin Report 712.
12.
Vacca
,
A.
,
Klop
,
R.
, and
Ivantysynova
,
M.
,
2010
, “
A Numerical Approach for the Evaluation of the Effects of Air Release and Vapour Cavitation on Effective Flow Rate of Axial Piston Machines
,”
Int. J. Fluid Power
,
11
(
1
), pp. 33–45.
13.
Dular
,
M.
, and
Coutier-Delgosha
,
O.
,
2009
, “
Numerical Modelling of Cavitation Erosion
,”
Int. J. Numer. Methods Fluids
,
61
(
12
), pp.
1388
1410
.
14.
Wang
,
Y.
,
Daruta
,
G.
,
Poirierb
,
T.
,
Stellac
,
J.
,
Liaoa
,
H.
, and
Planche
,
M.-P.
,
2017
, “
Ultrasonic Cavitation Erosion of as-Sprayed and Laser-Remelted Yttria Stabilized Zirconia Coatings
,”
J. Eur. Ceram. Soc.
,
37
(
11
), pp.
3623
3630
.
15.
Bordeasu
,
I.
,
Popoviciu
,
M. O.
,
Salcianu1
,
L. C.
,
Ghera
,
C.
,
Micu
,
L. M.
,
Badarau
,
R.
,
Iosif
,
A.
,
Pirvulescu
,
L. D.
, and
Podoleanu
,
C. E.
,
2017
, “
A New Concept for Stainless Steels Ranking Upon the Resistance to Cavitation Erosion
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
163
, p. 012002.
16.
Gibson
,
I. H.
,
1994
, “
Variable-Speed Drives as Flow Control Elements
,”
ISA Trans.
,
33
(2), pp. 165–169.
17.
Çalışkan
,
H.
,
Balkan
,
T.
, and
Platin
,
B. E.
,
2009
, “
Hydraulic Position Control System With Variable Speed Pump
,”
ASME
Paper No. DSCC2009-2693
.
18.
Brown
,
F. T.
,
1984
, “
The Use of Fluid Inertia for D/A Conversion in Hydraulic PWM Circuits With Seating Valves—Part I: Concepts
,”
ASME
Paper No. 84-WA/DSC-4
.
19.
Brown
,
F. T.
,
Tentarelli
,
S. C.
, and
Ramachandran
,
S.
,
1988
, “
A Hydraulic Rotary Switched-Inertasice Servo-Transformer
,”
Trans. ASME
,
110
(
2
), pp.
144
150
.
20.
Pan
,
M.
,
Johnston
,
N.
, and
Hillis
,
A.
,
2013
, “
Active Control of Pressure Pulsation in a Switched Inertance Hydraulic System
,”
Proc.-Inst. Mech. Eng.
,
227
(
7
), pp.
610
620
.
21.
Merrill
,
K. J.
,
Breidi
,
F. Y.
, and
Lumkes
,
J.
, 2013, “
Simulation Based Design and Optimization of Digital Pump/Motors
,”
ASME
Paper No. FPMC2013-4475
.
22.
Breidi
,
F.
,
Helmus
,
T.
, and
Lumkes
,
J.
, 2015, “
High Efficiency Digital Pump/Motor
,”
Fluid Power Innovation & Research Conference (FPIRC15)
, Chicago, IL, Oct. 14–16.
23.
Wisch
,
J. K.
,
Manring
,
N. D.
, and
Fales
,
R. C.
,
2017
, “
Dynamic Characteristics of a Pressure-Compensated Inlet-Metered Pump
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
6
), p.
064502
.
24.
Wisch
,
J. K.
,
2016
, “
Dynamic and Efficiency Characteristics of an Inlet Metering Valve Controlled Fixed Displacement Pump
,”
Ph.D. dissertation
, University of Missouri, Columbia, MO.https://mospace.umsystem.edu/xmlui/handle/10355/60423
You do not currently have access to this content.