This paper has been written to develop closed-form equations for describing the theoretical displacement of a check-valve type, digital displacement pump. In theory, the digital displacement pump is used to alter the apparent volumetric displacement of the machine by short circuiting the flow path for reciprocating pistons within the machine that would ordinarily deliver a full volumetric flow rate to the discharge side of the pump. The short circuiting for the pistons is achieved by opening and closing a digital valve connected to each piston chamber at a desired time during the kinematic cycle for each reciprocating piston. Experience with these machines has shown that the expected volumetric displacement for the machine tends to decrease with pressure. This paper presents a theoretical explanation for the reduced volumetric displacement of the pump and quantifies the expected behavior based upon the digital valve command, the residual volume of fluid within a single piston chamber, and the fluid bulk modulus-of-elasticity. In summary, it shown that the apparent volumetric displacement of the machine may be reduced by as much as 10% for high-displacement commands and by as much as 30% for low-displacement commands.

References

1.
Manring
,
N. D.
,
2016
, “
Mapping the Efficiency of a Hydrostatic Transmission
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
3
), p.
031004
.
2.
Manring
,
N. D.
, and
Mehta
,
V.
,
2011
, “
Physical Limitations for the Bandwidth Frequency of a Pressure Controlled, Axial-Piston Pump
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(6), p. 061005.
3.
Republic Aviation Corporation
,
1964
, “
Research Investigation of Hydraulic Pulsation Concepts
,” U.S. Air Force, Wright-Patterson Air Force Base, OH, Contract No. AF33 (657)-10622.
4.
Tanaka
,
H.
,
Tanaka
,
H.
, and
Kazuo
,
A.
,
1984
, “
Electro-Hydraulic Digital Control of 3-Way On/Off Solenoid Valves
,”
Trans. Jpn. Soc. Mech. Eng., Part B
,
50
(
458
), pp.
2663
2666
.
5.
Muto
,
T.
,
Yamada
,
H.
, and
Suematsu
,
Y.
,
1990
, “
PWM-Digital Control of a Hydraulic Actuator Utilizing Two-Way Solenoid Valves
,”
J. Fluid Control
,
20
(
2
), pp.
24
41
.
6.
Suematsu
,
Y.
,
Yamada
,
H.
,
Tsukamoto
,
T.
, and
Muto
,
T.
,
1993
, “
Digital Control of Electrohydraulic Servo Systems Operated by Differential Pulse Width Modulation
,”
Jpn. Soc. Mech. Eng. Int. J. Ser. C
,
36
(
1
), pp.
61
68
.
7.
Scheidl
,
R.
, and
Hametner
,
G.
,
2003
, “
The Role of Resonance in Elementary Hydraulic Switching Control
,”
Proc. Inst. Mech. Eng., Part I
,
217
(
6
), pp.
469
480
.
8.
Li
,
P.
,
Li
,
C.
, and
Chase
,
T.
,
2005
, “
Software Enabled Variable Displacement Pumps
,”
ASME
Paper No. IMECE2005-81376.
9.
Rannow
,
M. B.
,
Tu
,
H. C.
,
Li
,
P.
, and
Chase
,
T.
,
2006
, “
Software Enabled Variable Displacement Pumps—Experimental Studies
,”
ASME
Paper No. IMECE2006-14973.
10.
Nieling
,
M.
,
Fronczak
,
M. J.
, and
Beachley
,
N. H.
,
2005
, “
Design of a Virtually Variable Displacement Pump/Motor
,”
50th National Conference on Fluid Power
, Las Vegas, NV, Mar. 16–18, pp.
323
336
.
11.
Lumkes
,
J.
,
Batdorff
,
M.
, and
Mahrenholz
,
J.
,
2009
, “
Model Development and Experimental Analysis of a Virtually Variable Displacement Pump System
,”
Int. J. Fluid Power
,
10
(
3
), pp.
17
27
.
12.
Feng
,
W.
,
Linyi
,
G.
,
Jianwei
,
C.
, and
Ying
,
C.
,
2007
, “
Research on Deep-Sea Electric Power Generation Technique From Seawater Pressure
,”
ASME
Paper No. IMECE2007-41694.
13.
Salter
,
S. H.
, and
Rea
,
M.
,
1984
, “
Hydraulics for Wind
,” European Wind Energy Conference
, Hamberg, Germany, Oct. 22–26, pp. 1–8.
14.
Salter
,
S. H.
, and
Rampen
,
W. H. S.
,
1989
, “
Pump Control Method and Poppet Valve Therefore
,” Artemis Intelligent Power Ltd, Loanhead, UK, U. S. Patent No.
EP0361927 A1
.https://patents.google.com/patent/EP0361927A1/fi
15.
Salter
,
S. H.
, and
Rampen
,
W. H. S.
,
1990
, “
Improved Fluid Working Machine
,” Artemis Intelligent Power Ltd, Loanhead, UK, U. S. Patent No.
EP0494236 A1
.https://patents.google.com/patent/EP0494236A1/en
16.
Rampen
,
W. H. S.
,
1992
, “
The Digital Displacement Hydraulic Piston Pump
,” Ph.D. thesis, University of Edinburgh, Edinburgh, UK.
17.
Linjama
,
M.
,
2011
, “
Digital Fluid Power—State of the Art
,”
12th Scandinavian International Conference on Fluid Power
, Tampere, Finland, May 18–20, pp. 1–16.
18.
ISO,
2008
, “
Hydraulic Fluid Power—Positive Displacement Pumps and Motors—Determination of Derived Capacity
,” International Standard Organization, Geneva, Switzerland, Standard No. ISO 8426:2008.
19.
Johnston
,
D. N.
,
1991
, “
Numerical Modelling of Reciprocating Pumps With Self-Acting Valves
,”
Proc. Inst. Mech. Eng.
,
205
(
2
), pp.
87
96
.
20.
Pan
,
M.
,
Johnston
,
N.
,
Robertson
,
J.
,
Plummer
,
A.
,
Hillis
,
A.
, and
Yang
,
H.
,
2015
, “
Experimental Investigation of a Switched Inertance Hydraulic System With a High-Speed Rotary Valve
,”
ASME J. Dyn. Syst. Meas. Control
,
137
, p.
121003
.
21.
Wisch
,
J. K.
,
Manring
,
N. D.
, and
Fales
,
R. C.
,
2017
, “
Dynamic Characteristics of a Pressure-Compensated Inlet-Metered Pump
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(6), p.
064501
.
22.
Leati
,
E.
,
Scheidl
,
R.
, and
Ploeckinger
,
A.
,
2013
, “
On the Dynamic Behavior of Check Valves for High Frequency Oscillation Pumps
,”
ASME
Paper No. FPMC2013-4416.
23.
He
,
X.
,
Zhu
,
B.
,
Liu
,
Y.
, and
Jiang
,
Z.
,
2011
, “
Study on a Seawater Hydraulic Piston Pump With Check Valves for Underwater Tools
,”
Proc. Inst. Mech. Eng., Part A
,
226
, pp.
151
160
.
24.
He
,
X.
,
Huang
,
W.
,
Zhu
,
B.
, and
Luo
,
L.
,
2011
, “
Air Suction Characteristics of a Water Hydraulic Piston Pump With Check Valves
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
114502
.
25.
Caldwell
,
N. J.
,
2007
, “
Digital Displacement Hydrostatic Transmission Systems
,” Ph.D. dissertation, University of Edinburgh, Edinburgh, UK.
26.
Manring
,
N. D.
,
2005
,
Hydraulic Control Systems
,
Wiley
,
New York
.
27.
Manring
,
N. D.
,
2013
,
Fluid Power Pumps and Motors: Analysis, Design, and Control
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.