Abstract

A scaled robotic endoscopy platform (REP) was previously developed to efficiently test new control schemes in a simulated colon environment. This article presents the derivation and tuning of a nonlinear model of the REP operating on various substrates. The modeling technique and novel empirical friction profiling demonstrated here are useful for a wide variety of devices interacting with unconventional substrates. The model is first derived from the REP drivetrain inertial characteristics, and then the interaction with synthetic tissue is quantified by an automated traction measurement system for multiple substrates. The resulting model is then used with ground-truth VICON and sensor data to optimize uncertain parameters by minimizing pose error over a variety of tests and substrates. The results show an average error reduction of 67% over all tests and substrates, with a worst-case 10% open-loop final position error. The success of these results proves a robust dynamic model of the REP and its tissue interactions without the need to model complex and computationally expensive viscoelastic material properties or discrete/nonlinear events such as stalling. The resulting model will be used to develop model-based feedback control for estimation, disturbance rejection, and autonomy for the REP in an actuated colon simulator.

References

1.
National Cancer Institute
, 2019 “
Cancer Stat Facts: Colorectal Cancer
,” Surveillance, Epidemiology, and End Results Program, accessed Sept. 1, 2020, https://seer.cancer.gov/statfacts/html/colorect.html
2.
American
Cancer Society
, 2019, “
Key Statistics for Colorectal Cancer
,” American Cancer Society, accessed Sept. 1, 2020, https://www.cancer.org/cancer/colon-rectal-cancer/about/key-statistics.html
3.
Marshall
,
J. B.
,
1995
, “
Technical Proficiency of Trainees Performing Colonoscopy: A Learning Curve
,”
Gastrointest. Endosc.
,
42
(
4
), pp.
287
–2
91
.10.1016/S0016-5107(95)70123-0
4.
Shah
,
S. G.
,
Brooker
,
J. C.
,
Thapar
,
C.
,
Williams
,
C. B.
, and
Saunders
,
B. P.
,
2002
, “
Patient Pain During Colonoscopy: An Analysis Using Real-Time Magnetic Endoscope Imaging
,”
Endoscopy
,
34
(
6
), pp.
435
–4
40
.10.1055/s-2002-31995
5.
Ciuti
,
G.
,
Skonieczna-Żydecka
,
K.
,
Marlicz
,
W.
,
Iacovacci
,
V.
,
Liu
,
H.
,
Stoyanov
,
D.
,
Arezzo
,
A.
,
Chiurazzi
,
M.
,
Toth
,
E.
,
Thorlacius
,
H.
,
Dario
,
P.
, and
Koulaouzidis
,
A.
,
2020
, “
Frontiers of Robotic Colonoscopy: A Comprehensive Review of Robotic Colonoscopes and Technologies
,”
J. Clin. Med.
,
9
(
6
), p.
1648
.10.3390/jcm9061648
6.
Lee
,
D.
,
Seonggun
,
J.
,
Jung
,
J. H.
,
Kim
,
J. U.
, and
Kim
,
B.
,
2018
, “
A Simple and Reliable Reel Mechanism-Based Robotic Colonoscope for High Mobility
,”
Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
,
232
(
16
), pp.
2753
–27
63
.10.1177/0954406217723941
7.
Nagase
,
J. Y.
,
Suzumori
,
K.
, and
Saga
,
N.
,
2013
, “
Development of Worm-Rack Driven Cylindrical Crawler Unit
,”
J. Adv. Mech. Des. Syst. Manuf.
,
7
(
3
), pp.
422
–4
31
.10.1299/jamdsm.7.422
8.
Pittiglio
,
G.
,
Barducci
,
L.
,
Martin
,
J. W.
,
Norton
,
J. C.
,
Avizzano
,
C. A.
,
Obstein
,
K. L.
, and
Valdastri
,
P.
,
2019
, “
Magnetic Levitation for Soft-Tethered Capsule Colonoscopy Actuated With a Single Permanent Magnet: A Dynamic Control Approach
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
1224
–12
31
.10.1109/LRA.2019.2894907
9.
Alcaide
,
J. O.
,
Pearson
,
L.
, and
Rentschler
,
M. E.
,
2017
, “
Design, Modeling and Control of a SMA-Actuated Biomimetic Robot With Novel Functional Skin
,” 2017 IEEE International Conference on Robotics and Automation (
ICRA
), Singapore,
May 29–June 3, pp.
4338
4345
.10.1109/ICRA.2017.7989500
10.
Sliker
,
L. J.
,
Wang
,
X.
,
Schoen
,
J. A.
, and
Rentschler
,
M. E.
,
2010
, “
Micropatterned Treads for In Vivo Robotic Mobility
,”
ASME J. Med. Devices
,
4
(
4
), p.
41006
.10.1115/1.4002761
11.
Sliker
,
L. J.
,
Kern
,
M. D.
,
Schoen
,
J. A.
, and
Rentschler
,
M. E.
,
2012
, “
Surgical Evaluation of a Novel Tethered Robotic Capsule Endoscope Using Micro-Patterned Treads
,”
Surg. Endosc.
26
(
10
), pp.
2862
–28
69
.10.1007/s00464-012-2271-y
12.
Prendergast
,
J. M.
,
Formosa
,
G. A.
, and
Rentschler
,
M. E.
,
2018
, “
A Platform for Developing Robotic Navigation Strategies in a Deformable, Dynamic Environment
,”
IEEE Robot. Autom. Lett.
,
3
(
3
), pp.
2670
–26
77
.10.1109/LRA.2018.2827168
13.
Prendergast
,
J. M.
,
Formosa
,
G. A.
,
Heckman
,
C. R.
, and
Rentschler
,
M. E.
,
2018
, “
Autonomous Localization, Navigation and Haustral Fold Detection for Robotic Endoscopy
,” 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
),
Madrid
,
Spain
,
Oct. 1–5, pp.
783
790
.10.1109/IROS.2018.8594106
14.
Formosa
,
G. A.
,
Prendergast
,
J. M.
,
Peng
,
J.
,
Kirkpatrick
,
D.
, and
Rentschler
,
M. E.
,
2018
, “
A Modular Endoscopy Simulation Apparatus (MESA) for Robotic Medical Device Sensing and Control Validation
,”
IEEE Robot. Autom. Lett.
,
3
(
4
), pp.
4054
–40
61
.10.1109/LRA.2018.2861015
15.
Sliker
,
L. J.
,
Kern
,
M. D.
, and
Rentschler
,
M. E.
,
2015
, “
An Automated Traction Measurement Platform and Empirical Model for Evaluation of Rolling Micropatterned Wheels
,”
IEEE/ASME Trans. Mechatr.
,
20
(
4
), pp.
1854
–18
62
.10.1109/TMECH.2014.2357037
16.
Faulhaber Group
,
2019
, “DC-Micromotors,” Faulhaber Global, https://www.faulhaber.com/fileadmin/Import/Media/EN_0615_S_FMM.pdf
17.
Kern
,
M.
,
Ortega
,
J.
, and
Rentschler
,
M. E.
,
2014
, “
Soft Material Adhesion Characterization for In Vivo Locomotion of Robotic Capsule Endoscopes: Experimental and Modeling Results
,”
J. Mech. Behav. Biomed. Mater.
,
39
, pp.
257
269
.10.1016/j.jmbbm.2014.07.032
18.
Johannes
,
K. G.
,
Calahan
,
K. N.
,
Qi
,
Y.
,
Long
,
R.
, and
Rentschler
,
M. E.
,
2019
, “
Three-Dimensional Microscale Imaging and Measurement of Soft Material Contact Interfaces Under Quasi-Static Normal Indentation and Shear
,”
Langmuir
,
35
(
33
), pp.
10725
10733
.10.1021/acs.langmuir.9b00830
You do not currently have access to this content.