Abstract

This work addresses the design and experimental implementation in real-time of an integrated predictive load-split management system for the transient and fluctuating propeller load sharing. Control-oriented modeling of the power system was performed based on experimental data gathered from the hybrid plant and on first principles for the diesel engine behavior and battery charging. Propulsion plant and environmental disturbance models are developed to simulate realistic marine load application. A nonlinear model predictive control (NMPC) scheme is proposed for the optimal transient power-split problem of a hybrid diesel-electric marine propulsion plant. The NMPC scheme directly controls the torque output of the diesel engine and the electric motor/generator ensuring that certain constraints concerning the system overloading are met, avoiding fast accelerations and load fluctuations of the diesel engine that affect engine performance. To achieve offset-free model predictive control (MPC) control, an observer is developed to provide the propeller law parameter to the NMPC for load estimation. The control system was experimentally tested in real-time operation. Results showed that controller rejected load disturbances and maintained the desired rotational speed of the powertrain as well as the desirable state of charge (SOC) in battery within the power plant limits, achieving smooth power transitions and mitigation of power fluctuations of the diesel engine.

References

1.
Jaurola
,
M.
,
Hedin
,
A.
,
Tikkanen
,
S.
, and
Huhtala
,
K.
,
2019
, “
Optimising Design and Power Management in Energy-Efficient Marine Vessel Power Systems: A Literature Review
,”
J. Mar. Eng. Technol.
,
18
(
2
), pp.
92
101
.10.1080/20464177.2018.1505584
2.
Serrao
,
L.
,
Onori
,
S.
, and
Rizzoni
,
G.
,
2011
, “
A Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
3
), p.
031012
.10.1115/1.4003267
3.
Sivertsson
,
M.
, and
Eriksson
,
L.
,
2015
, “
Optimal Transient Control Trajectories in Diesel Electric Systems: Part I—Modeling, Problem Formulation, and Engine Properties
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
021601
.10.1115/1.4028359
4.
Bidarvatan
,
M.
, and
Shahbakhti
,
M.
,
2018
, “
Analysis and Control of Torque Split in Hybrid Electric Vehicles by Incorporating Powertrain Dynamics
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
11
), p.
111009
.10.1115/1.4040219
5.
Huo
,
Y.
, and
Yan
,
F.
,
2018
, “
A Predictive Energy Management Strategy for Hybrid Electric Powertrain With a Turbocharged Diesel Engine
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
6
), p.
061017
.10.1115/1.4039216
6.
Nüesch
,
T.
,
Wang
,
M.
,
Isenegger
,
P.
,
Onder
,
C. H.
,
Steiner
,
R.
,
Macri-Lassus
,
P.
, and
Guzzella
,
L.
,
2014
, “
Optimal Energy Management for a Diesel Hybrid Electric Vehicle Considering Transient pm and Quasi-Static NOx Emissions
,”
Control Eng. Pract.
,
29
, pp.
266
276
.10.1016/j.conengprac.2014.01.020
7.
Di Cairano
,
S.
,
Liang
,
W.
,
Kolmanovsky
,
I. V.
,
Kuang
,
M. L.
, and
Phillips
,
A. M.
,
2013
, “
Power Smoothing Energy Management and Its Application to a Series Hybrid Powertrain
,”
IEEE Trans. Control Syst. Technol.
,
21
(
6
), pp.
2091
2103
.10.1109/TCST.2012.2218656
8.
Grondin
,
O.
,
Thibault
,
L.
, and
Quérel
,
C.
,
2014
, “
Energy Management Strategies for Diesel Hybrid Electric Vehicle
,”
Oil Gas Sci. Technol.
,
70
(
1
), pp.
125
141
.10.2516/ogst/2013215
9.
Sankar
,
G. S.
,
Shekhar
,
R. C.
,
Manzie
,
C.
,
Sano
,
T.
, and
Nakada
,
H.
,
2019
, “
Model Predictive Controller With Average Emissions Constraints for Diesel Airpath
,”
Control Eng. Pract.
,
90
, pp.
182
189
.10.1016/j.conengprac.2019.06.021
10.
Bemporad
,
A.
,
Bernardini
,
D.
,
Long
,
R.
, and
Verdejo
,
J.
,
2018
, “
Model Predictive Control of Turbocharged Gasoline Engines for Mass Production
,”
SAE
Paper No. 2018-01-0875.10.4271/2018-01-0875
11.
Albin
,
T.
,
Ritter
,
D.
,
Liberda
,
N.
,
Quirynen
,
R.
, and
Diehl
,
M.
,
2018
, “
In-Vehicle Realization of Nonlinear Mpc for Gasoline Two-Stage Turbocharging Airpath Control
,”
IEEE Trans. Control Syst. Technol.
,
26
(
5
), pp.
1606
1618
.10.1109/TCST.2017.2724020
12.
Huang
,
M.
,
Nakada
,
H.
,
Butts
,
K.
, and
Kolmanovsky
,
I.
,
2015
, “
Nonlinear Model Predictive Control of a Diesel Engine Air Path: A Comparison of Constraint Handling and Computational Strategies
,”
IFAC-PapersOnLine
,
48
(
23
), pp.
372
379
.10.1016/j.ifacol.2015.11.308
13.
Kang
,
M.
,
Alamir
,
M.
, and
Shen
,
T.
,
2016
, “
Nonlinear Constrained Torque Control for Gasoline Engines
,”
IFAC-PapersOnLine
,
49
(
18
), pp.
784
789
.10.1016/j.ifacol.2016.10.261
14.
Zeman
,
P.
,
Kemmetmüller
,
W.
, and
Kugi
,
A.
,
2017
, “
Nonlinear Model Predictive Control of Axial Piston Pumps
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
8
), p.
081008
.10.1115/1.4035608
15.
Yu
,
K.
,
Mukai
,
M.
, and
Kawabe
,
T.
,
2013
, “
A Battery Management System Using Nonlinear Model Predictive Control for a Hybrid Electric Vehicle
,”
IFAC Proc. Vols.
,
46
(
21
), pp.
301
306
.10.3182/20130904-4-JP-2042.00015
16.
Bordin
,
C.
, and
Mo
,
O.
,
2019
, “
Including Power Management Strategies and Load Profiles in the Mathematical Optimization of Energy Storage Sizing for Fuel Consumption Reduction in Maritime Vessels
,”
J. Energy Storage
,
23
, pp.
425
441
.10.1016/j.est.2019.03.021
17.
Ovrum
,
E.
, and
Bergh
,
T.
,
2015
, “
Modelling Lithium-Ion Battery Hybrid Ship Crane Operation
,”
Appl. Energy
,
152
, pp.
162
172
.10.1016/j.apenergy.2015.01.066
18.
Wan Yuan
,
L. C.
,
Tjahjowidodo
,
T.
,
Gim Lee
,
G. S.
,
Chan
,
R.
, and
Dnanes
,
A. K.
,
2016
, “
Equivalent Consumption Minimization Strategy for Hybrid All-Electric Tugboats to Optimize Fuel Savings
,” American Control Conference (
ACC
), Boston, MA, July 6–8, pp.
6803
6808
.10.1109/ACC.2016.7526743
19.
Kalikatzarakis
,
M.
,
Geertsma
,
R.
,
Boonen
,
E.
,
Visser
,
K.
, and
Negenborn
,
R.
,
2018
, “
Ship Energy Management for Hybrid Propulsion and Power Supply With Shore Charging
,”
Control Eng. Pract.
,
76
, pp.
133
154
.10.1016/j.conengprac.2018.04.009
20.
Vu
,
T. L.
,
Ayu
,
A. A.
,
Dhupia
,
J. S.
,
Kennedy
,
L.
, and
Adnanes
,
A. K.
,
2015
, “
Power Management for Electric Tugboats Through Operating Load Estimation
,”
IEEE Trans. Control Syst. Technol.
,
23
(
6
), pp.
2375
2382
.10.1109/TCST.2015.2399440
21.
Diju
,
G.
,
Wang
,
X.
,
Wang
,
T.
,
Wang
,
Y.
, and
Xu
,
X.
,
2018
, “
An Energy Optimization Strategy for Hybrid Power Ships Under Load Uncertainty Based on Load Power Prediction and Improved NSGA-II Algorithm
,”
Energies
,
11
(
7
), p.
1699
.10.3390/en11071699
22.
Dahl
,
A. R.
,
Thorat
,
L.
, and
Skjetne
,
R.
,
2018
, “
Model Predictive Control of Marine Vessel Power System by Use of Structure Preserving Model
,”
IFAC-PapersOnLine
,
51
(
29
), pp.
335
340
.10.1016/j.ifacol.2018.09.501
23.
Bo
,
T. I.
,
Vaktskjold
,
E.
,
Pedersen
,
E.
, and
Mo
,
O.
,
2019
, “
Model Predictive Control of Marine Power Plants With Gas Engines and Battery
,”
IEEE Access
,
7
, pp.
15706
15721
.10.1109/ACCESS.2019.2895163
24.
Hou
,
J.
,
Song
,
Z.
,
Park
,
H.
,
Hofmann
,
H.
, and
Sun
,
J.
,
2018
, “
Implementation and Evaluation of Real-Time Model Predictive Control for Load Fluctuations Mitigation in All-Electric Ship Propulsion Systems
,”
Appl. Energy
,
230
, pp.
62
77
.10.1016/j.apenergy.2018.08.079
25.
Park
,
H.
,
Sun
,
J.
,
Pekarek
,
S.
,
Stone
,
P.
,
Opila
,
D.
,
Meyer
,
R.
,
Kolmanovsky
,
I.
, and
DeCarlo
,
R.
,
2015
, “
Real-Time Model Predictive Control for Shipboard Power Management Using the IPA-SQP Approach
,”
IEEE Trans. Control Syst. Technol.
,
23
(
6
), pp.
2129
2143
.10.1109/TCST.2015.2402233
26.
Guzzella
,
L.
, and
Sciarretta
,
A.
,
2012
,
Vehicle Propulsion Systems: Introduction to Modeling and Optimization
,
Springer
,
Berlin
.
27.
Geertsma
,
R.
,
Negenborn
,
R.
,
Visser
,
K.
,
Loonstijn
,
M.
, and
Hopman
,
J.
,
2017
, “
Pitch Control for Ships With Diesel Mechanical and Hybrid Propulsion: Modelling, Validation and Performance Quantification
,”
Appl. Energy
,
206
, pp.
1609
1631
.10.1016/j.apenergy.2017.09.103
28.
Godjevac
,
M.
,
Drijver
,
J.
,
de Vries
,
L.
, and
Stapersma
,
D.
,
2016
, “
Evaluation of Losses in Maritime Gearboxes
,”
Proc. Inst. Mech. Eng., Part M
,
230
(
4
), pp.
623
638
.10.1177/1475090215613814
29.
Taskar
,
B.
,
Yum
,
K. K.
,
Steen
,
S.
, and
Pedersen
,
E.
,
2016
, “
The Effect of Waves on Engine-Propeller Dynamics and Propulsion Performance of Ships
,”
Ocean Eng.
,
122
, pp.
262
277
.10.1016/j.oceaneng.2016.06.034
30.
Carlton
,
J.
,
2018
,
Marine Propellers and Propulsion
, 4th ed.,
Butterworth-Heinemann
,
Oxford, UK
.
31.
Park
,
J.-S.
, and
Lee
,
S.-M.
,
2012
, “
Characteristics of Resistance Performance on Tugboat in Still Water and Waves
,”
J. Korean Soc. Mar. Environ. Saf.
,
18
(
6
), pp.
597
603
.10.7837/kosomes.2012.18.6.597
32.
Houska
,
B.
,
Ferreau
,
H.
, and
Diehl
,
M.
,
2011
, “
ACADO Toolkit—An Open Source Framework for Automatic Control and Dynamic Optimization
,”
Optim. Control Appl. Methods
,
32
(
3
), pp.
298
312
.10.1002/oca.939
33.
Smogeli
,
O.
,
2006
, “
Control of Marine Propellers: From Normal to Extreme Conditions
,” Ph.D. thesis,
Norwegian University of Science and Technology, NTNU
,
Trondheim, Norway
.
34.
Li
,
S.
,
Yang
,
J.
,
Chen
,
W.
, and
Chen
,
X.
,
2012
, “
Generalized Extended State Observer Based Control for Systems With Mismatched Uncertainties
,”
IEEE Trans. Ind. Electron.
,
59
(
12
), pp.
4792
4802
.10.1109/TIE.2011.2182011
35.
Waschl
,
H.
,
Jrgensen
,
J. B.
,
Huusom
,
J. K.
, and
del Re
,
L.
,
2015
, “
A Novel Tuning Approach for Offset-Free Mpc
,” European Control Conference (
ECC
), Linz, Austria, July 15–17, pp.
545
550
.10.1109/ECC.2015.7330600
36.
Pannocchia
,
G.
,
2015
, “
Offset-Free Tracking Mpc: A Tutorial Review and Comparison of Different Formulations
,” European Control Conference (
ECC
), Linz, Austria, July 15–17, pp.
527
532
.10.1109/ECC.2015.7330597
37.
Liu
,
X.
,
Li
,
W.
, and
Zhou
,
A.
,
2018
, “
Pngv Equivalent Circuit Model and SOC Estimation Algorithm for Lithium Battery Pack Adopted in AGV Vehicle
,”
IEEE Access
,
6
, pp.
23639
23647
.10.1109/ACCESS.2018.2812421
You do not currently have access to this content.