Abstract

Fine buoyancy control is essential for underwater robots to maintain neutral buoyancy despite dynamic changes in environmental conditions. This paper introduces a novel buoyancy control system that uses reversible fuel cells (RFC) as a mass-to-volume engine to change the underwater robots' buoyancy. The RFC uses both the water electrolysis process and fuel cell reaction to produce and consume gases in a flexible bladder for volume change. Unlike conventional actuators such as motors and pistons used in buoyancy control, this mechanism is silent, compact, and energy-efficient. A dynamic model that described the dynamics of the RFC-enabled buoyancy change is presented. Then, a proportional-derivative (PD) controller is designed to position the device at any depth underwater. A prototype device is built to validate the dynamic model and the performance of the feedback controller. Experimental results demonstrate a fine depth control performance with 4 cm accuracy and 90 s settling time. The compact buoyancy design is readily integrable with small underwater robots for fine depth change allowing the robots to save actuation energy.

References

1.
Woods
,
S. A.
,
Bauer
,
R. J.
, and
Seto
,
M. L.
,
2012
, “
Automated Ballast Tank Control System for Autonomous Underwater Vehicles
,”
IEEE J. Oceanic Eng.
,
37
(
4
), pp.
727
739
.10.1109/JOE.2012.2205313
2.
Tangirala
,
S.
, and
Dzielski
,
J.
,
2007
, “
A Variable Buoyancy Control System for a Large AUV
,”
IEEE J. Oceanic Eng.
,
32
(
4
), pp.
762
771
.10.1109/JOE.2007.911596
3.
MacLeod
,
M.
, and
Bryant
,
M.
,
2017
, “
Dynamic Modeling, Analysis, and Testing of a Variable Buoyancy System for Unmanned Multidomain Vehicles
,”
IEEE J. Oceanic Eng.
,
42
(
3
), pp.
511
521
.10.1109/JOE.2016.2586802
4.
Biffinger
,
J. C.
,
Fitzgerald
,
L. A.
,
Howard
,
E. C.
,
Petersen
,
E. R.
,
Fulmer
,
P. A.
,
Wu
,
P. K.
, and
Ringeisen
,
B. R.
,
2013
, “
Controlling Autonomous Underwater Floating Platforms Using Bacterial Fermentation
,”
Appl. Microbiol. Biotechnol.
,
97
(
1
), pp.
135
142
.10.1007/s00253-012-4296-5
5.
Asakawa
,
K.
,
Watari
,
K.
,
Ohuchi
,
H.
,
Nakamura
,
M.
,
Hyakudome
,
T.
, and
Ishihara
,
Y.
,
2016
, “
Buoyancy Engine Developed for Underwater Gliders
,”
Adv. Rob.
,
30
(
1
), pp.
41
49
.10.1080/01691864.2015.1102647
6.
Masoomi
,
S. F.
,
Gutschmidt
,
S.
,
Gaume
,
N.
,
Guillaume
,
T.
,
Eatwel
,
C.
,
Chen
,
X.
, and
Sellier
,
M.
,
2015
, “
Design and Construction of a Specialised Biomimetic Robot in Multiple Swimming Gaits
,”
Int. J. Adv. Rob. Syst.
,
12
(
11
), p.
168
.10.5772/60547
7.
Shibuya
,
K.
, and
Yoshii
,
S.
,
2013
, “
New Volume Change Mechanism Using Metal Bellows for Buoyancy Control Device of Underwater Robots
,”
ISRN Rob.
,
2013
(, pp.
1
7
.10.5402/2013/541643
8.
Medvedev
,
A. V.
,
Kostenko
,
V. V.
, and
Tolstonogov
,
A. Y.
,
2017
, “
Depth Control Methods of Variable Buoyancy AUV
,”
2017 IEEE Underwater Technology (UT)
,
Busan, South Korea
, Feb. 21–24, pp.
1
7
.10.1109/UT.2017.7890333
9.
Wang
,
Y.
,
Loh
,
L. Y. W.
,
Gupta
,
U.
,
Foo
,
C. C.
, and
Zhu
,
J.
,
2020
, “
Bio-Inspired Soft Swim Bladders of Large Volume Change Using Dual Dielectric Elastomer Membranes
,”
ASME J. Appl. Mech.
,
87
(
4
), p.
041007
.10.1115/1.4045901
10.
Liu
,
B.
,
Chen
,
F.
,
Wang
,
S.
,
Fu
,
Z.
,
Cheng
,
T.
, and
Li
,
T.
,
2017
, “
Electromechanical Control and Stability Analysis of a Soft Swim-Bladder Robot Driven by Dielectric Elastomer
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
091005
.10.1115/1.4037147
11.
Um
,
T. I.
,
Chen
,
Z.
, and
Bart-Smith
,
H.
,
2011
, “
A Novel Electroactive Polymer Buoyancy Control Device for Bio-Inspired Underwater Vehicles
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
, May 9–13, pp.
172
177
.10.1109/ICRA.2011.5980181
12.
Chen
,
Z.
,
Um
,
T. I.
, and
Bart-Smith
,
H.
,
2012
, “
Modeling and Control of Artificial Bladder Enabled by Ionic Polymer-Metal Composite
,”
2012 American Control Conference (ACC)
,
Montreal, QC, Canada
, June 27–29, pp.
3340
3345
.10.1109/ACC.2012.6315312
13.
Keow
,
A.
,
Chen
,
Z.
, and
Bart-Smith
,
H.
,
2020
, “
PIDA Control of Buoyancy Device Enabled by Water Electrolysis
,”
IEEE/ASME Trans. Mechatronics
,
25
(
3
), pp.
1202
1210
.10.1109/TMECH.2020.2968322
14.
Zuo
,
W.
,
Dhal
,
K.
,
Keow
,
A.
,
Chakravarthy
,
A.
, and
Chen
,
Z.
,
2020
, “
Model-Based Control of a Robotic Fish to Enable 3D Maneuvering Through a Moving Orifice
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
4719
4726
.10.1109/LRA.2020.3003862
15.
Keow
,
A.
,
Zuo
,
W.
,
Ghorbel
,
F.
, and
Chen
,
Z.
,
2020
, “
Underwater Buoyancy and Depth Control Using Reversible PEM Fuel Cells
,”
2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Boston, MA
, July 6–9, pp.
54
59
.10.1109/AIM43001.2020.9158646
You do not currently have access to this content.