Abstract

This paper develops boundary control for freeway traffic with a downstream bottleneck. Traffic on a freeway segment with capacity drop at outlet of the segment is a common phenomenon that leads to traffic bottleneck problem. The capacity drop can be caused by lane-drop, hills, tunnel, bridge, or curvature on the road. If incoming traffic flow remains unchanged, traffic congestion forms upstream of the bottleneck since the upstream traffic demand exceeds its capacity. Therefore, it is important to regulate the incoming traffic flow of the segment to avoid overloading the bottleneck area. Traffic densities on the freeway segment are described with the Lighthill–Whitham–Richards (LWR) macroscopic partial differential equation (PDE) model. The incoming flow at the inlet of the freeway segment is controlled so that the optimal density that maximizes the outgoing flow is reached and the traffic congestion upstream of the bottleneck is mitigated. The density and traffic flow relation at the bottleneck area, usually described with fundamental diagram, is considered to be unknown. We tackle this problem using extremum seeking (ES) control with delay compensation for the LWR PDE. ES control, a nonmodel-based approach for real-time optimization, is adopted to find the optimal density for the unknown fundamental diagram. A predictor feedback control design is proposed to compensate the delay effect of traffic dynamics in the freeway segment. In the end, simulation results are obtained to validate a desired performance of the controller on the nonlinear LWR model with an unknown fundamental diagram.

References

1.
Chung
,
K.
,
Rudjanakanoknad
,
J.
, and
Cassidy
,
M. J.
,
2007
, “
Relation Between Traffic Density and Capacity Drop at Three Freeway Bottlenecks
,”
Transp. Res. Part B
,
41
(
1
), pp.
82
95
.10.1016/j.trb.2006.02.011
2.
Hadiuzzaman
,
M.
,
Qiu
,
T. Z.
, and
Lu
,
X. Y.
,
2013
, “
Variable Speed Limit Control Design for Relieving Congestion Caused by Active Bottlenecks
,”
J. Transp. Eng.
,
139
(
4
), pp.
358
370
.10.1061/(ASCE)TE.1943-5436.0000507
3.
Jin
,
H. Y.
, and
Jin
,
W. L.
,
2015
, “
Control of a Lane-Drop Bottleneck Through Variable Speed Limits
,”
Transp. Res. Part C
,
58
, pp.
568
584
.10.1016/j.trc.2014.08.024
4.
Kim
,
K.
, and
Cassidy
,
M. J.
,
2012
, “
A Capacity-Increasing Mechanism in Freeway Traffic
,”
Transp. Res. Part B
,
46
(
9
), pp.
1260
1272
.10.1016/j.trb.2012.06.002
5.
Kontorinaki
,
M.
,
Spiliopoulou
,
A.
,
Roncoli
,
C.
, and
Papageorgiou
,
M.
,
2017
, “
First-Order Traffic Flow Models Incorporating Capacity Drop: Overview and Real-Data Validation
,”
Transp. Res. Part B
,
106
, pp.
52
75
.10.1016/j.trb.2017.10.014
6.
Lu
,
Y.
,
Wong
,
S. C.
,
Zhang
,
M.
, and
Shu
,
C. W.
,
2009
, “
The Entropy Solutions for the Lighthill-Whitham-Richards Traffic Flow Model With a Discontinuous Flow-Density Relationship
,”
Transp. Sci.
,
43
(
4
), pp.
511
530
.10.1287/trsc.1090.0277
7.
Jin
,
W. L.
,
2013
, “
A Multi-Commodity Lighthill-Whitham-Richards Model of Lane-Changing Traffic Flow
,”
Procedia-Soc. Behav. Sci.
,
80
, pp.
658
677
.10.1016/j.sbspro.2013.05.035
8.
Bekiaris-Liberis
,
N.
, and
Krstic
,
M.
,
2018
, “
Compensation of Actuator Dynamics Governed by Quasilinear Hyperbolic PDEs
,”
Automatica
,
92
, pp.
29
40
.10.1016/j.automatica.2018.02.006
9.
Treiber
,
M.
, and
Kesting
,
A.
,
2013
, “
Traffic flow dynamics
,”
Traffic Flow Dynamics: Data, Models and Simulation
,
Springer-Verlag
,
Berlin
.
10.
Wang
,
Y.
,
Kosmatopoulos
,
E. B.
,
Papageorgiou
,
M.
, and
Papamichail
,
I.
,
2014
, “
Local Ramp Metering in the Presence of a Distant Downstream Bottleneck: Theoretical Analysis and Simulation Study
,”
IEEE Trans. Intell. Transp. Syst.
,
15
(
5
), pp.
2024
2039
.10.1109/TITS.2014.2307884
11.
Čičić
,
M.
, and
Johansson
,
K. H.
,
2018
, “
Traffic Regulation Via Individually Controlled Automated Vehicles: A Cell Transmission Model Approach
,”
21st International Conference on Intelligent Transportation Systems (ITSC)
,
Maui, HI
, Nov. 4–7, pp.
766
771
.10.1109/ITSC.2018.8569960
12.
Delle Monache
,
M. L.
, and
Goatin
,
P.
,
2014
, “
Scalar Conservation Laws With Moving Constraints Arising in Traffic Flow Modeling: An Existence Result
,”
J. Differ. Equations
,
257
(
11
), pp.
4015
4029
.10.1016/j.jde.2014.07.014
13.
Lattanzio
,
C.
,
Maurizi
,
A.
, and
Piccoli
,
B.
,
2011
, “
Moving Bottlenecks in Car Traffic Flow: A PDE-ODE Coupled Model
,”
SIAM J. Math. Anal.
,
43
(
1
), pp.
50
67
.10.1137/090767224
14.
Piacentini
,
G.
,
Goatin
,
P.
, and
Ferrara
,
A.
,
2018
, “
Traffic Control Via Moving Bottleneck of Coordinated Vehicles
,”
IFAC-PapersOnLine
,
51
(
9
), pp.
13
18
.10.1016/j.ifacol.2018.07.003
15.
Villa
,
S.
,
Goatin
,
P.
, and
Chalons
,
C.
,
2017
, “
Moving Bottlenecks for the Aw-Rascle-Zhang Traffic Flow Model
,”
Discrete Contin. Dyn. Syst.-B
,
22
(
10
), pp.
3921
3952
.
16.
Ariyur
,
K. B.
, and
Krstic
,
M.
,
2003
,
Real-Time Optimization by Extremum-Seeking Control
,
Wiley
,
USA
.
17.
Benosman
,
M.
,
2016
,
Learning-Based Adaptive Control: An Extremum Seeking Approach–Theory and Applications
,
Butterworth-Heinemann
,
United Kingdom
.
18.
Feiling
,
J.
,
Koga
,
S.
,
Krstic
,
M.
, and
Oliveira
,
T. R.
,
2018
, “
Gradient Extremum Seeking for Static Maps With Actuation Dynamics Governed by Diffusion PDEs
,”
Automatica
,
95
, pp.
197
206
.10.1016/j.automatica.2018.05.023
19.
Ghaffari
,
A.
,
Krstic
,
M.
, and
Nesic
,
D.
,
2012
, “
Multivariable Newton-Based Extremum Seeking
,”
Automatica
,
48
(
8
), pp.
1759
1767
.10.1016/j.automatica.2012.05.059
20.
Ghaffari
,
A.
,
Krstic
,
M.
, and
Seshagiri
,
S.
,
2014
, “
Power Optimization and Control in Wind Energy Conversion Systems Using Extremum Seeking
,”
IEEE Trans. Control Syst. Technol.
,
22
(
5
), pp.
1684
1695
.10.1109/TCST.2014.2303112
21.
Ghaffari
,
A.
,
Krstic
,
M.
, and
Seshagiri
,
S.
,
2014
, “
Power Optimization for Photovoltaic Microconverters Using Multivariable Newton-Based Extremum Seeking
,”
IEEE Trans. Control Syst. Technol.
,
22
(
6
), pp.
2141
2149
.10.1109/TCST.2014.2301172
22.
Guay
,
M.
, and
Zhang
,
T.
,
2003
, “
Adaptive Extremum Seeking Control of Nonlinear Dynamic Systems With Parametric Uncertainties
,”
Automatica
,
39
(
7
), pp.
1283
1293
.10.1016/S0005-1098(03)00105-5
23.
Krstic
,
M.
,
2000
, “
Performance Improvement and Limitations in Extremum Seeking Control
,”
Syst. Control Lett.
,
39
(
5
), pp.
313
326
.10.1016/S0167-6911(99)00111-5
24.
Krstic
,
M.
, and
Wang
,
H. H.
,
2000
, “
Stability of Extremum Seeking Feedback for General Nonlinear Dynamic Systems
,”
Automatica
,
36
(
4
), pp.
595
601
.10.1016/S0005-1098(99)00183-1
25.
Liu
,
S. J.
, and
Krstic
,
M.
,
2010
, “
Stochastic Averaging in Continuous Time and Its Applications to Extremum Seeking
,”
IEEE Trans. Autom. Control
,
55
(
10
), pp.
2235
2250
.10.1109/TAC.2010.2043290
26.
Liu
,
S. J.
, and
Krstic
,
M.
,
2012
,
Stochastic Averaging and Stochastic Extremum Seeking
,
Springer Science & Business Media
,
Germany
.
27.
Oliveira
,
T. R.
,
Krstic
,
M.
, and
Tsubakino
,
D.
,
2017
, “
Extremum Seeking for Static Maps With Delays
,”
IEEE Trans. Autom. Control
,
62
(
4
), pp.
1911
1926
.10.1109/TAC.2016.2564958
28.
Rušiti
,
D.
,
Evangelisti
,
G.
,
Oliveira
,
T. R.
,
Gerdts
,
M.
, and
Krstic
,
M.
,
2019
, “
Stochastic Extremum Seeking for Dynamic Maps With Delays
,”
IEEE Control Syst. Lett.
,
3
(
1
), pp.
61
66
.10.1109/LCSYS.2018.2851602
29.
Tan
,
Y.
,
Nešić
,
D.
, and
Mareels
,
I.
,
2006
, “
On Non-Local Stability Properties of Extremum Seeking Control
,”
Automatica
,
42
(
6
), pp.
889
903
.10.1016/j.automatica.2006.01.014
30.
Tan
,
Y.
,
Nešić
,
D.
,
Mareels
,
I.
, and
Astolfi
,
A.
,
2009
, “
On Global Extremum Seeking in the Presence of Local Extrema
,”
Automatica
,
45
(
1
), pp.
245
251
.10.1016/j.automatica.2008.06.010
31.
Wang
,
H. H.
,
Yeung
,
S.
, and
Krstic
,
M.
,
2000
, “
Experimental Application of Extremum Seeking on an Axial-Flow Compressor
,”
IEEE Trans. Control Syst. Technol.
,
8
(
2
), pp.
300
309
.10.1109/87.826801
32.
Peterson
,
K. S.
, and
Stefanopoulou
,
A. G.
,
2004
, “
Extremum Seeking Control for Soft Landing of an Electromechanical Valve Actuator
,”
Automatica
,
40
(
6
), pp.
1063
1069
.10.1016/j.automatica.2004.01.027
33.
Chang
,
Y. A.
, and
Moura
,
S. J.
,
2009
, “
Air Flow Control in Fuel Cell Systems: An Extremum Seeking Approach
,”
American Control Conference
,
St. Louis, MO
, June 10–12, pp.
1052
1059
.10.1109/ACC.2009.5160016
34.
Bagheri
,
M.
,
Krstic
,
M.
, and
Naseradinmousavi
,
P.
,
2018
, “
Multivariable Extremum Seeking for Joint-Space Trajectory Optimization of a High-Degrees of Freedom Robot
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
11
), p.
111017
.10.1115/1.4040752
35.
Dervisoglu
,
G.
,
Gomes
,
G.
,
Kwon
,
J.
,
Horowitz
,
R.
, and
Varaiya
,
P.
,
2009
, “
Automatic Calibration of the Fundamental Diagram and Empirical Observations on Capacity
,”
Transportation Research Board 88th Annual Meeting
, Vol.
15
,
Washington, DC
, pp. 31–59.
36.
Fan
,
S.
, and
Seibold
,
B.
,
2013
, “
Data-Fitted First-Order Traffic Models and Their Second-Order Generalizations: Comparison by Trajectory and Sensor Data
,”
Transp. Res. Rec.
,
2391
(
1
), pp.
32
43
.10.3141/2391-04
37.
Carlson
,
R. C.
,
Papamichail
,
I.
,
Papageorgiou
,
M.
, and
Messmer
,
A.
,
2010
, “
Optimal Motorway Traffic Flow Control Involving Variable Speed Limits and Ramp Metering
,”
Transp. Sci.
,
44
(
2
), pp.
238
253
.10.1287/trsc.1090.0314
38.
Hegyi
,
A.
,
Schutter
,
B. D.
, and
Hellendoorn
,
H.
,
2005
, “
Model Predictive Control for Optimal Coordination of Ramp Metering and Variable Speed Limits
,”
Transp. Res. Part C
,
13
(
3
), pp.
185
209
.10.1016/j.trc.2004.08.001
39.
Karafyllis
,
I.
, and
Papageorgiou
,
M.
,
2019
, “
Feedback Control of Scalar Conservation Laws With Application to Density Control in Freeways by Means of Variable Speed Limits
,”
Automatica
,
105
, pp.
228
236
.10.1016/j.automatica.2019.03.021
40.
Lu
,
X. Y.
,
Varaiya
,
P.
,
Horowitz
,
R.
,
Su
,
D.
, and
Shladover
,
S. E.
,
2011
, “
Novel Freeway Traffic Control With Variable Speed Limit and Coordinated Ramp Metering
,”
Transp. Res. Rec.
,
2229
(
1
), pp.
55
65
.10.3141/2229-07
41.
Yu
,
H.
, and
Krstic
,
M.
,
2019
, “
Traffic Congestion Control for Aw-Rascle-Zhang Model
,”
Automatica
,
100
, pp.
38
51
.10.1016/j.automatica.2018.10.040
42.
Yu
,
H.
,
Diagne
,
M.
,
Zhang
,
L.
, and
Krstic
,
M.
,
2020
, “
Bilateral Boundary Control of Moving Shockwave in LWR Model of Congested Traffic
,”
IEEE Trans. Autom. Control
, epub.10.1109/TAC.2020.2994031
43.
Zhang
,
Y.
, and
Ioannou
,
P. A.
,
2017
, “
Coordinated Variable Speed Limit, Ramp Metering and Lane Change Control of Highway Traffic
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
5307
5312
.10.1016/j.ifacol.2017.08.982
44.
Hale
,
J. K.
, and
Lunel
,
S. V.
,
1990
, “
Averaging in Infinite Dimensions
,”
J. Integr. Equations Appl.
,
2
(
4
), pp.
463
494
.10.1216/jiea/1181075583
45.
Haring
,
M.
, and
Johansen
,
T. A.
,
2017
, “
Asymptotic Stability of Perturbation-Based Extremum-Seeking Control for Nonlinear Plants
,”
IEEE Trans. Autom. Control
,
62
(
5
), pp.
2302
2317
.10.1109/TAC.2016.2603607
46.
Scheinker
,
A.
, and
Krstic
,
M.
,
2014
, “
Extremum Seeking With Bounded Update Rates
,”
Syst. Control Lett.
,
63
, pp.
25
31
.10.1016/j.sysconle.2013.10.004
47.
Yu
,
H.
,
Gan
,
Q.
,
Bayen
,
A.
, and
Krstic
,
M.
,
2020
, “
PDE Traffic Observer Validated on Freeway Data
,”
IEEE Trans. Control Syst. Technol.
epub.10.1109/TCST.2020.2989101
48.
Krstic
,
M.
, and
Smyshlyaev
,
A.
,
2008
,
Boundary Control of PDEs: A Course on Backstepping Designs
,
SIAM
,
Philadelphia, PA
.
You do not currently have access to this content.