Abstract

In this paper, we analyze the inverse dynamics and control of a bacteria-inspired uniflagellar robot in a fluid medium at low Reynolds number. Inspired by the mechanism behind the locomotion of flagellated bacteria, we consider a robot comprising a flagellum—a flexible helical filament—connected to a spherical head. The flagellum rotates about the head at a controlled angular velocity and generates a propulsive force that moves the robot forward. When the angular velocity exceeds a threshold value, the hydrodynamic force exerted by the fluid can cause the soft flagellum to buckle, characterized by a dramatic change in its shape. In this computational study, a fluid–structure interaction model that combines Discrete Elastic Rods algorithm with Lighthill's Slender Body Theory is employed to simulate the locomotion and deformation of the robot. We demonstrate that the robot can follow a prescribed path in three-dimensional space by exploiting buckling of the flagellum. The control scheme involves only a single (binary) scalar input—the angular velocity of the flagellum. By triggering the buckling instability at the right moment, the robot can follow the path in three-dimensional space. We also show that the complexity of the dynamics of the helical filament can be captured using a deep neural network, from which we identify the input–output functional relationship between the control input and the trajectory of the robot. Furthermore, our study underscores the potential role of buckling in the locomotion of natural bacteria.

References

1.
Hellum
,
A.
,
Mukherjee
,
R.
,
Benard
,
A.
, and
Hull
,
A. J.
,
2013
, “
Modeling and Simulation of the Dynamics of a Submersible Propelled by a Fluttering Fluid-Conveying Tail
,”
J. Fluids Struct.
,
36
, pp.
83
110
.10.1016/j.jfluidstructs.2012.08.006
2.
Strefling
,
P. C.
,
Hellum
,
A. M.
, and
Mukherjee
,
R.
,
2012
, “
Modeling, Simulation, and Performance of a Synergistically Propelled Ichthyoid
,”
IEEE/ASME Trans. Mechatronics
,
17
(
1
), pp.
36
45
.10.1109/TMECH.2011.2172950
3.
Ornes
,
S.
,
2017
, “
Medical Microrobots Have Potential in Surgery, Therapy, Imaging, and Diagnostics
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
47
), pp.
12356
12358
.10.1073/pnas.1716034114
4.
Taylor
,
R. H.
, and
Stoianovici
,
D.
,
2003
, “
Medical Robotics in Computer-Integrated Surgery
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
765
781
.10.1109/TRA.2003.817058
5.
Nelson
,
B. J.
,
Kaliakatsos
,
I. K.
, and
Abbott
,
J. J.
,
2010
, “
Microrobots for Minimally Invasive Medicine
,”
Annu. Rev. Biomed. Eng.
,
12
(
1
), pp.
55
85
.10.1146/annurev-bioeng-010510-103409
6.
Abbott
,
J. J.
,
Nagy
,
Z.
,
Beyeler
,
F.
, and
Nelson
,
B. J.
,
2007
, “
Robotics in the Small
,”
IEEE Rob. Autom. Mag.
,
14
(
2
), pp.
92
103
.10.1109/MRA.2007.380641
7.
Nain
,
S.
, and
Sharma
,
N. N.
,
2015
, “
Propulsion of an Artificial Nanoswimmer: A Comprehensive Review
,”
Front. Life Sci.
,
8
(
1
), pp.
2
17
.10.1080/21553769.2014.962103
8.
Li
,
H.
,
Tan
,
J.
, and
Zhang
,
M.
,
2009
, “
Dynamics Modeling and Analysis of a Swimming Microrobot for Controlled Drug Delivery
,”
IEEE Trans. Rob. Autom.
,
6
, pp.
220
227
.10.1109/ROBOT.2006.1641962
9.
Fusco
,
S.
,
Ullrich
,
F.
,
Pokki
,
J.
,
Chatzipirpiridis
,
G.
,
Ozkale
,
B.
,
Sivaraman
,
K. M.
,
Ergeneman
,
O.
,
Pane
,
S.
, and
Nelson
,
B. J.
,
2014
, “
Microrobots: A New Era in Ocular Drug Delivery
,”
Expert Opin. Drug Delivery
,
11
(
11
), pp.
1815
1826
.10.1517/17425247.2014.938633
10.
Medina-Sanchez
,
M.
,
Schwarz
,
L.
,
Meyer
,
A. K.
,
Hebenstreit
,
F.
, and
Schmidt
,
O. G.
,
2016
, “
Cellular Cargo Delivery: Toward Assisted Fertilization by Sperm-Carrying Micromotors
,”
Nano Lett.
,
16
(
1
), pp.
555
561
.10.1021/acs.nanolett.5b04221
11.
Edd
,
J.
,
Payen
,
S.
,
Rubinsky
,
B.
,
Stoller
,
M. L.
, and
Sitti
,
M.
,
2003
, “
Biomimetic Propulsion for a Swimming Surgical Micro-Robot
,”
IEEE International Conference on Intelligent Robots and Systems
, Las Vegas, NV, Oct. 27–31.10.1109/IROS.2003.1249259
12.
Servant
,
A.
,
Qiu
,
F.
,
Mazza
,
M.
,
Kostarelos
,
K.
, and
Nelson
,
B. J.
,
2015
, “
Controlled In Vivo Swimming of a Swarm of Bacteria-Like Microrobotic Flagella
,”
Adv. Mater.
,
27
(
19
), pp.
2981
2988
.10.1002/adma.201404444
13.
Pak
,
O. S.
,
Gao
,
W.
,
Wang
,
J.
, and
Lauga
,
E.
,
2011
, “
High-Speed Propulsion of Flexible Nanowire Motors: Theory and Experiments
,”
Soft Matter
,
7
(
18
), pp.
8169
8181
.10.1039/c1sm05503h
14.
Ghosh
,
A.
, and
Fischer
,
P.
,
2009
, “
Controlled Propulsion of Artificial Magnetic Nanostructured Propellers
,”
Nano Lett.
,
9
(
6
), pp.
2243
2245
.10.1021/nl900186w
15.
Abbott
,
J. J.
,
Peyer
,
K. E.
,
Lagomarsino
,
M. C.
,
Zhang
,
L.
,
Dong
,
L.
,
Kaliakatsos
,
I. K.
, and
Nelson
,
B. J.
,
2009
, “
How Should Microrobots Swim?
,”
Int. J. Rob. Res.
,
28
(
11–12
), pp.
1434
1447
.10.1177/0278364909341658
16.
Magdanz
,
V.
,
Sanchez
,
S.
, and
Schmidt
,
O. G.
,
2013
, “
Development of a Sperm-Flagella Driven Micro-Bio-Robot
,”
Adv. Mater.
,
25
(
45
), pp.
6581
6588
.10.1002/adma.201302544
17.
Bell
,
D. J.
,
Leutenegger
,
S.
,
Hammar
,
K. M.
,
Dong
,
L. X.
, and
Nelson
,
B. J.
,
2007
, “
Flagella-Like Propulsion for Microrobots Using a Nanocoil and a Rotating Electromagnetic Field
,”
IEEE International Conference on Robotics and Automation
, Roma, Italy, Apr.
10
14
.10.1109/ROBOT.2007.363136
18.
Behkam
,
B.
, and
Sitti
,
M.
,
2006
, “
Design Methodology for Biomimetic Propulsion of Miniature Swimming Robots
,”
ASME J. Dyn. Syst., Meas., Control
,
128
(
1
), pp.
36
43
.10.1115/1.2171439
19.
Kosa
,
G.
,
Shoham
,
M.
, and
Zaaroor
,
M.
,
2007
, “
Propulsion Method for Swimming Microrobots
,”
IEEE Trans. Rob.
,
23
(
1
), pp.
137
150
.10.1109/TRO.2006.889485
20.
Sanchez
,
S.
,
Soler
,
L.
, and
Katuri
,
J.
,
2015
, “
Chemically Powered Micro- and Nanomotors
,”
Angew. Chem., Int. Ed.
,
54
(
5
), pp.
1414
1444
.10.1002/anie.201406096
21.
Nourmohammadi
,
H.
, and
Keighobadi
,
J.
,
2014
, “
Design, Modeling and Control of a Maneuverable Swimming Micro-Robot
,”
Proceedings of the 19th International Federation of Automatic Control World Congress
,
Cape Town, South Africa
, Aug.
24
29
.
22.
Kim
,
S.
,
Lee
,
S.
,
Lee
,
J.
,
Nelson
,
B. J.
,
Zhang
,
L.
, and
Choi
,
H.
,
2016
, “
Fabrication and Manipulation of Ciliary Microrobots With Non-Reciprocal Magnetic Actuation
,”
Sci. Rep.
,
6
(
1
), p.
30713
.10.1038/srep30713
23.
Carlsen
,
R. W.
,
Edwards
,
M. R.
,
Zhuang
,
J.
,
Pacoret
,
C.
, and
Sitti
,
M.
,
2014
, “
Magnetic Steering Control of Multi-Cellular Bio-Hybrid Microswimmers
,”
Lab Chip
,
14
(
19
), pp.
3850
3859
.10.1039/C4LC00707G
24.
Osada
,
Y.
,
Okuzaki
,
H.
, and
Hori
,
H.
,
1992
, “
A Polymer Gel With Electrically Driven Motility
,”
Nature
,
355
(
6357
), pp.
242
244
.10.1038/355242a0
25.
Lobaton
,
E. J.
, and
Bayen
,
A. M.
,
2009
, “
Modeling and Optimization Analysis of a Single-Flagellum Micro-Structure Through the Method of Regularized Stokeslets
,”
IEEE Trans. Control Syst. Technol.
,
17
(
4
), pp.
907
916
.10.1109/TCST.2008.2011889
26.
Wu
,
Z.
,
de Avila
,
B. E.-F.
,
Martin
,
A.
,
Christianson
,
C.
,
Gao
,
W.
,
Thamphiwatana
,
S. K.
,
Escarpa
,
A.
,
He
,
Q.
,
Zhang
,
L.
, and
Wang
,
J.
,
2015
, “
RBC Micromotors Carrying Multiple Cargos Towards Potential Theranostic Applications
,”
Nanoscale
,
7
(
32
), pp.
13680
13686
.10.1039/C5NR03730A
27.
Nguyen
,
F. T. M.
, and
Graham
,
M. D.
,
2018
, “
Impacts of Multiflagellarity on Stability and Speed of Bacterial Locomotion
,”
Phys. Rev. E
,
98
(
4
), p.
042419
.10.1103/PhysRevE.98.042419
28.
Ali
,
J.
,
Cheang
,
U. K.
,
Martindale
,
J. D.
,
Jabbarzadeh
,
M.
,
Fu
,
H. C.
, and
Kim
,
M. J.
,
2017
, “
Bacteria-Inspired Nanorobots With Flagellar Polymorphic Transformations and Bundling
,”
Sci. Rep.
,
7
(
1
), p.
14098
.10.1038/s41598-017-14457-y
29.
Hintsche
,
M.
,
Waljor
,
V.
,
Großmann
,
R.
,
Kühn
,
M. J.
,
Thormann
,
K. M.
,
Peruani
,
F.
, and
Beta
,
C.
,
2017
, “
A Polar Bundle of Flagella Can Drive Bacterial Swimming by Pushing, Pulling, or Coiling Around the Cell Body
,”
Sci. Rep.
,
7
(
1
), p.
16771
.10.1038/s41598-017-16428-9
30.
Nguyen
,
F. T. M.
, and
Graham
,
M. D.
,
2017
, “
Buckling Instabilities and Complex Trajectories in a Simple Model of Uniflagellar Bacteria
,”
Biophys. J.
,
112
(
5
), pp.
1010
1022
.10.1016/j.bpj.2016.12.051
31.
Son
,
K.
,
Guasto
,
J. S.
, and
Stocker
,
R.
,
2013
, “
Bacteria Can Exploit a Flagellar Buckling Instability to Change Direction
,”
Nat. Phys.
,
9
(
8
), pp.
494
498
.10.1038/nphys2676
32.
Rodenborn
,
B.
,
Chen
,
C. H.
,
Swinney
,
H. L.
,
Liu
,
B.
, and
Zhang
,
H. P.
,
2013
, “
Propulsion of Microorganisms by a Helical Flagellum
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
5
), pp.
E338
E347
.10.1073/pnas.1219831110
33.
Kim
,
M.
, and
Powers
,
T. R.
,
2005
, “
Deformation of a Helical Filament by Flow and Electric or Magnetic Fields
,”
Phys. Rev. E
,
71
(
2
), p.
021914
.10.1103/PhysRevE.71.021914
34.
Bergou
,
M.
,
Wardetzky
,
M.
,
Robinson
,
S.
,
Audoly
,
B.
, and
Grinspun
,
E.
,
2008
, “
Discrete Elastic Rods
,”
ACM Trans. Graph.
,
27
(
3
), pp.
1
12
.10.1145/1360612.1360662
35.
Bergou
,
M.
,
Audoly
,
B.
,
Vouga
,
E.
,
Wardetzky
,
M.
, and
Grinspun
,
E.
,
2010
, “
Discrete Viscous Threads
,”
ACM Trans. Graph.
,
29
(
4
), pp.
1
10
.10.1145/1778765.1778853
36.
Jawed
,
M. K.
,
Novelia
,
A.
, and
O'Reilly
,
O. M.
,
2018
,
A Primer on the Kinematics of Discrete Elastic Rods
,
Springer
,
Cham, Switzerland
.
37.
Lighthill
,
J.
,
1976
, “
Flagellar Hydrodynamics
,”
SIAM Rev.
,
18
(
2
), pp.
161
230
.10.1137/1018040
38.
Jawed
,
M. K.
,
Khouri
,
N. K.
,
Da
,
F.
,
Grinspun
,
E.
, and
Reis
,
P. M.
,
2015
, “
Propulsion and Instability of a Flexible Helical Rod Rotating in a Viscous Fluid
,”
Phys. Rev. Lett.
,
115
(
16
), p.
168101
.10.1103/PhysRevLett.115.168101
39.
Jawed
,
M. K.
, and
Reis
,
P. M.
,
2017
, “
Dynamics of a Flexible Helical Filament Rotating in a Viscous Fluid Near a rigid boundary
,”
Phys. Rev. Fluids
,
2
(
3
), p.
034101
.10.1103/PhysRevFluids.2.034101
40.
Higdon
,
J. J. L.
,
1979
, “
A Hydrodynamic Analysis of Flagellar Propulsion
,”
J. Fluid Mech.
,
90
(
4
), pp.
685
711
.10.1017/S0022112079002482
41.
Thawani
,
A.
, and
Tirumkudulu
,
M. S.
,
2018
, “
Trajectory of a Model Bacterium
,”
J. Fluid Mech.
,
835
, pp.
252
270
.10.1017/jfm.2017.758
42.
Huang
,
W.
, and
Jawed
,
M. K.
,
2020
, “
Numerical Exploration on Buckling Instability for Directional Control in Flagellar Propulsion
,”
Soft Matter
,
16
(
3
), pp.
604
613
.10.1039/C9SM01843C
43.
King
,
S.-Y.
, and
Hwang
,
J.-N.
,
1989
, “
Neural Network Architectures for Robotic Applications
,”
IEEE Trans. Rob. Autom.
,
5
(
5
), pp.
641
657
.10.1109/70.88082
44.
Khodayi-Mehr
,
R.
,
Aquino
,
W.
, and
Zavlanos
,
M. M.
,
2019
, “
Model-Based Active Source Identification in Complex Environments
,”
IEEE Trans. Rob.
,
35
(
3
), pp.
633
652
.10.1109/TRO.2019.2894039
45.
Forghani
,
M.
,
McNew
,
J. M.
,
Hoehener
,
D.
, and
Vecchio
,
D. D.
,
2015
, “
Safety Control of a Class of Stochastic Order Preserving Systems With Application to Collision Avoidance Near Stop Signs
,”
American Control Conference
,
Chicago, IL
, July
1
3
.10.1109/ACC.2015.7170786
46.
Momi
,
E. D.
,
Kranendonk
,
L.
,
Valenti
,
M.
,
Enayati
,
N.
, and
Ferrigno
,
G.
,
2016
, “
A Neural Network-Based Approach for Trajectory Planning in Robot-Human Handover Tasks
,”
Front. Rob.
3
, p.
34
.10.3389/frobt.2016.00034
47.
Forghani
,
M.
,
McNew
,
J. M.
,
Hoehener
,
D.
, and
Vecchio
,
D. D.
,
2016
, “
Design of Driver-Assist Systems Under Probabilistic Safety Specifications Near Stop Signs
,”
IEEE Trans. Autom. Sci. Eng.
,
13
(
1
), pp.
43
53
.10.1109/TASE.2015.2499221
48.
Kirchhoff
,
G.
,
1859
, “
Ueber Das Gleichgewicht Und Die Bewegung Eines Unendlich Dunnen Elastischen Stabes
,”
J. Reine Angew. Math.
,
56
, pp.
285
313
.10.1515/crll.1859.56.285
49.
Coq
,
N.
,
Roure
,
O. D.
,
Marthelot
,
J.
,
Bartolo
,
D.
, and
Fermigier
,
M.
,
2008
, “
Rotational Dynamics of a Soft Filament: Wrapping Transition and Propulsive Forces
,”
Phys. Fluids
,
20
(
5
), p.
051703
.10.1063/1.2909603
50.
Vogel
,
R.
, and
Stark
,
H.
,
2012
, “
Motor-Driven Bacterial Flagella and Buckling Instabilities
,”
Eur. Phys. J. E
,
35
, p.
15
.10.1140/epje/i2012-12015-0
51.
Foresee
,
F. D.
, and
Hagan
,
M. T.
,
1997
, “
Gauss-Newton Approximation to Bayesian Learning
,”
Proceedings of the International Conference on Neural Networks
,
Houston, TX
, June 12.10.1109/ICNN.1997.614194
52.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
53.
Morari
,
M.
, and
Lee
,
J. H.
,
1999
, “
Model Predictive Control: Past, Present and Future
,”
Comput. Chem. Eng.
,
23
(
4–5
), pp.
667
682
.10.1016/S0098-1354(98)00301-9
You do not currently have access to this content.