Abstract

Motivated by engineering applications, we address bounded steady-state optimal control of linear dynamical systems undergoing steady-state bandlimited periodic oscillations. The optimization can be cast as a minimization problem by expressing the state and the input as finite Fourier series expansions, and using the expansions coefficients as parameters to be optimized. With this parametrization, we address linear quadratic problems involving periodic bandlimited dynamics by using quadratic minimization with parametric time-dependent constraints. We hence investigate the implications of a discretization of linear continuous time constraints and propose an algorithm that provides a feasible suboptimal solution whose cost is arbitrarily close to the optimal cost for the original constrained steady-state problem. Finally, we discuss practical case studies that can be effectively tackled with the proposed framework, including optimal control of DC/AC power converters, and optimal energy harvesting from pulsating mechanical energy sources.

References

1.
Bertsekas
,
D. P.
,
2005
,
Dynamic Programming and Optimal Control
, Vol.
1
,
Athena Scientific
,
Belmont, MA
.
2.
Rao
,
A. V.
,
2009
, “
A Survey of Numerical Methods for Optimal Control
,”
Adv. Astronaut. Sci.
,
135
(
1
), pp.
497
528
.
3.
Biral
,
F.
,
Bertolazzi
,
E.
, and
Bosetti
,
P.
,
2016
, “
Notes on Numerical Methods for Solving Optimal Control Problems
,”
IEEJ J. Ind. Appl.
,
5
(
2
), pp.
154
166
.10.1541/ieejjia.5.154
4.
Von Stryk
,
O.
, and
Bulirsch
,
R.
,
1992
, “
Direct and Indirect Methods for Trajectory Optimization
,”
Ann. Oper. Res.
,
37
(
1
), pp.
357
373
.10.1007/BF02071065
5.
Dal Bianco
,
N.
,
Bertolazzi
,
E.
,
Biral
,
F.
, and
Massaro
,
M.
,
2019
, “
Comparison of Direct and Indirect Methods for Minimum Lap Time Optimal Control Problems
,”
Veh. Syst. Dyn.
,
57
(
5
), pp.
665
696
.10.1080/00423114.2018.1480048
6.
Bellman
,
R.
, and
Dreyfus
,
S.
,
1959
, “
Functional Approximations and Dynamic Programming
,”
Math. Tables Other Aids Comput.
,
13
(
68
), pp.
247
251
.10.2307/2002797
7.
Mitcheson
,
P. D.
,
Yeatman
,
E. M.
,
Rao
,
G. K.
,
Holmes
,
A. S.
, and
Green
,
T. C.
,
2008
, “
Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices
,”
Proc. IEEE
,
96
(
9
), pp.
1457
1486
.10.1109/JPROC.2008.927494
8.
Torquati
,
L.
,
Sanfelice
,
R. G.
, and
Zaccarian
,
L.
,
2017
, “
A Hybrid Predictive Control Algorithm for Tracking in a Single-Phase DC/AC Inverter
,” IEEE Conference on Control Technology and Applications (
CCTA
), Kohala Coast, HI, Aug. 27–30, pp.
904
909
.10.1109/CCTA.2017.8062574
9.
Nagurka
,
M. L.
, and
Yen
,
V.
,
1990
, “
Fourier-Based Optimal Control of Nonlinear Dynamic Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
112
(
1
), pp.
17
26
.10.1115/1.2894133
10.
Hussaini
,
M. Y.
,
Kopriva
,
D. A.
, and
Patera
,
A. T.
,
1989
, “
Spectral Collocation Methods
,”
Appl. Numer. Math.
,
5
(
3
), pp.
177
208
.10.1016/0168-9274(89)90033-0
11.
Yen
,
V.
, and
Nagurka
,
M.
,
1988
, “
Fourier-Based State Parameterization for Linear Quadratic Optimal Control
,” ASME Paper No. 398730.
12.
Yen
,
V.
, and
Nagurka
,
M.
,
1991
, “
Linear Quadratic Optimal Control Via Fourier-Based State Parameterization
,”
ASME J. Dyn. Syst., Meas., Control
,
113
(
2
), pp.
206
215
.10.1115/1.2896367
13.
Bacelli
,
G.
,
Ringwood
,
J. V.
, and
Gilloteaux
,
J.-C.
,
2011
, “
A Control System for a Self-Reacting Point Absorber Wave Energy Converter Subject to Constraints
,”
IFAC Proc.
,
44
(
1
), pp.
11387
11392
.10.3182/20110828-6-IT-1002.03694
14.
Bacelli
,
G.
, and
Ringwood
,
J. V.
,
2015
, “
Numerical Optimal Control of Wave Energy Converters
,”
IEEE Trans. Sustainable Energy
,
6
(
2
), pp.
294
302
.10.1109/TSTE.2014.2371536
15.
Han
,
L.
,
Camlibel
,
M. K.
,
Pang
,
J.-S.
, and
Heemels
,
W. M. H.
,
2012
, “
A Unified Numerical Scheme for Linear-Quadratic Optimal Control Problems With Joint Control and State Constraints
,”
Optim. Methods Software
,
27
(
4–5
), pp.
761
799
.10.1080/10556788.2011.593624
16.
Mariéthoz
,
S.
, and
Morari
,
M.
,
2009
, “
Explicit Model-Predictive Control of a PWM Inverter With an LCL Filter
,”
IEEE Trans. Ind. Electron.
,
56
(
2
), pp.
389
399
.10.1109/TIE.2008.2008793
17.
Beeby
,
S.
,
Tudor
,
M.
, and
White
,
N.
,
2006
, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Science Technol.
,
17
(
12
), pp.
R175
R195
.10.1088/0957-0233/17/12/R01
18.
Falcao
,
A.
,
2010
, “
Wave Energy Utilization: A Review of the Technologies
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
899
918
.10.1016/j.rser.2009.11.003
19.
Trégouët
,
J.-F.
,
Arzelier
,
D.
,
Peaucelle
,
D.
,
Pittet
,
C.
, and
Zaccarian
,
L.
,
2015
, “
Reaction Wheels Desaturation Using Magnetorquers and Static Input Allocation
,”
IEEE Trans. Control Syst. Technol.
,
23
(
2
), pp.
525
539
.10.1109/TCST.2014.2326037
20.
Brooks
,
R. A.
,
1983
, “
Planning Collision-Free Motions for Pick-and-Place Operations
,”
Int. J. Rob. Res.
,
2
(
4
), pp.
19
44
.10.1177/027836498300200402
21.
d'Andréa-Novel
,
B.
,
Campion
,
G.
, and
Bastin
,
G.
,
1995
, “
Control of Nonholonomic Wheeled Mobile Robots by State Feedback Linearization
,”
Int. J. Rob. Res.
,
14
(
6
), pp.
543
559
.10.1177/027836499501400602
22.
Faedo
,
N.
,
Scarciotti
,
G.
,
Astolfi
,
A.
, and
Ringwood
,
J. V.
,
2018
, “
Energy-Maximising Control of Wave Energy Converters Using a Moment-Domain Representation
,”
Control Eng. Pract.
,
81
, pp.
85
96
.10.1016/j.conengprac.2018.08.010
23.
Forsgren
,
A.
,
Gill
,
P. E.
, and
Wright
,
M. H.
,
2002
, “
Interior Methods for Nonlinear Optimization
,”
SIAM Rev.
,
44
(
4
), pp.
525
597
.10.1137/S0036144502414942
24.
Pavlov
,
A.
, and
van de Wouw
,
N.
,
2017
, “
Convergent Systems: Nonlinear Simplicity
,”
Nonlinear Systems
,
Springer
,
Cham, Switzerland
, pp.
51
77
.
25.
Aminzare
,
Z.
, and
Sontagy
,
E. D.
,
2014
, “
Contraction Methods for Nonlinear Systems: A Brief Introduction and Some Open Problems
,”
53rd IEEE Conference on Decision and Control
, Los Angeles, CA, Dec. 15–17, pp.
3835
3847
.10.1109/CDC.2014.7039986
26.
Rosati Papini
,
G. P.
,
Moretti
,
G.
,
Vertechy
,
R.
, and
Fontana
,
M.
,
2018
, “
Control of an Oscillating Water Column Wave Energy Converter Based on Dielectric Elastomer Generator
,”
Nonlinear Dyn.
,
92
(
2
), pp.
181
202
.10.1007/s11071-018-4048-x
27.
Camacho
,
E. F.
, and
Alba
,
C. B.
,
2013
,
Model Predictive Control
,
Springer Science & Business Media
,
London
.
28.
Moretti
,
G.
,
Rosati Papini
,
G. P.
,
Righi
,
M.
,
Forehand
,
D.
,
Ingram
,
D.
,
Vertechy
,
R.
, and
Fontana
,
M.
,
2018
, “
Resonant Wave Energy Harvester Based on Dielectric Elastomer Generator
,”
Smart Mater. Struct.
,
27
(
3
), p.
035015
.10.1088/1361-665X/aaab1e
29.
Li
,
Y.
, and
Yu
,
Y.-H.
,
2012
, “
A Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
4352
4364
.10.1016/j.rser.2011.11.008
30.
Renno
,
J. M.
,
Daqaq
,
M. F.
, and
Inman
,
D. J.
,
2009
, “
On the Optimal Energy Harvesting From a Vibration Source
,”
J. Sound Vib.
,
320
(
1–2
), pp.
386
405
.10.1016/j.jsv.2008.07.029
31.
Falnes
,
J.
,
2002
,
Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction
,
Cambridge University Press
,
Cambridge, UK
.
32.
Halvorsen
,
E.
,
Le
,
C. P.
,
Mitcheson
,
P.
, and
Yeatman
,
E. M.
,
2013
, “
Architecture-Independent Power Bound for Vibration Energy Harvesters
,”
J. Phys.: Conf. Ser.
,
476
, p.
012026
.10.1088/1742-6596/476/1/012026
33.
Hals
,
J.
,
Falnes
,
J.
, and
Moan
,
T.
,
2011
, “
Constrained Optimal Control of a Heaving Buoy Wave-Energy Converter
,”
ASME J. Offshore Mech. Arct. Eng.
,
133
(
1
), p.
011401
.10.1115/1.4001431
34.
Faedo
,
N.
,
García-Violini
,
D.
,
Scarciotti
,
G.
,
Astolfi
,
A.
, and
Ringwood
,
J. V.
,
2019
, “
Robust Moment-Based Energy-Maximising Optimal Control of Wave Energy Converters
,”
58th IEEE Conference on Decision and Control
, Nice, France, Dec. 11–13, pp.
4286
4291
.10.1109/CDC40024.2019.9029578
35.
Whittaker
,
T.
, and
Folley
,
M.
,
2012
, “
Nearshore Oscillating Wave Surge Converters and the Development of Oyster
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
370
(
1959
), pp.
345
364
.10.1098/rsta.2011.0152
You do not currently have access to this content.