Abstract

Our topic is the rational approximation of fractional order systems under Riemann–Liouville definition. This is a venerable, vast, fundamental area which attracts ongoing attention in coming years. In this work, the multiple fixed-pole scheme is developed. First, new schemes with different relative degree are developed to approximate fractional operators. Then, the fractional order is extended to the case of α>1. A discussion is made on the uniformity between the differentiator-based method and the integrator-based method. Afterward, the multiplicity of pole/zero is further generalized. In this framework, the nonzero initial instant and nonzero initial state are considered. Four examples are finally provided to show the feasibility and effectiveness of the developed algorithms.

References

1.
Sun
,
H. G.
,
Zhang
,
Y.
,
Baleanu
,
D.
,
Chen
,
W.
, and
Chen
,
Y. Q.
,
2018
, “
A New Collection of Real World Applications of Fractional Calculus in Science and Engineering
,”
Commun. Nonlinear Sci. Numer. Simul.
,
64
, pp.
213
231
.10.1016/j.cnsns.2018.04.019
2.
Tavakoli-Kakhki
,
M.
, and
Haeri
,
M.
,
2011
, “
Temperature Control of a Cutting Process Using Fractional Order Proportional-Integral-Derivative Controller
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
5
), p. 0
51014
.10.1115/1.4004059
3.
Badri
,
V.
, and
Saleh Tavazoei
,
M.
,
2016
, “
Simultaneous Compensation of the Gain, Phase, and Phase-Slope
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
12
), p.
121002
.10.1115/1.4034073
4.
Zhang
,
X. F.
, and
Zhang
,
Y. B.
,
2019
, “
Improvement of Admissibility of Linear Singular Fractional Order Systems
,”
ASME
Paper No. DETC2019-98329.10.1115/DETC2019-98329
5.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2013
, “
The Infinite State Approach: Origin and Necessity
,”
Comput. Math. Appl.
,
66
(
5
), pp.
892
907
.10.1016/j.camwa.2012.11.020
6.
Sabatier
,
J.
,
Farges
,
C.
, and
Trigeassou
,
J. C.
,
2014
, “
Fractional Systems State Space Description: Some Wrong Ideas and Proposed Solutions
,”
J. Vib. Control
,
20
(
7
), pp.
1076
1084
.10.1177/1077546313481839
7.
Zhao
,
Y.
,
Wei
,
Y. H.
,
Chen
,
Y. Q.
, and
Wang
,
Y.
,
2018
, “
A New Look at the Fractional Initial Value Problem: The Aberration Phenomenon
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
12
), p.
121004
.10.1115/1.4041621
8.
Wei
,
Y. H.
,
Chen
,
Y. Q.
,
Wang
,
J. C.
, and
Wang
,
Y.
,
2019
, “
Analysis and Description of the Infinite-Dimensional Nature for Nabla Discrete Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
72
, pp.
472
492
.10.1016/j.cnsns.2018.12.023
9.
Meng
,
L.
, and
Xue
,
D. Y.
,
2012
, “
A New Approximation Algorithm of Fractional Order System Models Based Optimization
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
4
), p.
044504
.10.1115/1.4006072
10.
Oustaloup
,
A.
,
Levron
,
F.
,
Mathieu
,
B.
, and
Nanot
,
F. M.
,
2000
, “
Frequency-Band Complex Noninteger Differentiator: Characterization and Synthesis
,”
IEEE Trans. Circuits Syst. I Fundam. Theory Appl.
,
47
(
1
), pp.
25
39
.10.1109/81.817385
11.
Poinot
,
T.
, and
Trigeassou
,
J. C.
,
2003
, “
A Method for Modelling and Simulation of Fractional Systems
,”
Signal Process.
,
83
(
11
), pp.
2319
2333
.10.1016/S0165-1684(03)00185-3
12.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2010
, “
Rational Approximations in the Simulation and Implementation of Fractional-Order Dynamics: A Descriptor System Approach
,”
Automatica
,
46
(
1
), pp.
94
100
.10.1016/j.automatica.2009.09.016
13.
Merrikh-Bayat
,
F.
,
2012
, “
Rules for Selecting the Parameters of Oustaloup Recursive Approximation for the Simulation of Linear Feedback Systems Containing PIλDμ Controller
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
4
), pp.
1852
1861
.10.1016/j.cnsns.2011.08.042
14.
Wei
,
Y. H.
,
Gao
,
Q.
,
Peng
,
C.
, and
Wang
,
Y.
,
2014
, “
A Rational Approximate Method to Fractional Order Systems
,”
Int. J. Control, Autom. Syst.
,
12
(
6
), pp.
1180
1186
.10.1007/s12555-013-0109-6
15.
Liang
,
S.
,
Peng
,
C.
,
Liao
,
Z.
, and
Wang
,
Y.
,
2014
, “
State Space Approximation for General Fractional Order Dynamic Systems
,”
Int. J. Syst. Sci.
,
45
(
10
), pp.
2203
2212
.10.1080/00207721.2013.766773
16.
Krajewski
,
W.
, and
Viaro
,
U.
,
2014
, “
A Method for the Integer-Order Approximation of Fractional-Order Systems
,”
J. Franklin Inst.
,
351
(
1
), pp.
555
564
.10.1016/j.jfranklin.2013.09.005
17.
Sabatier
,
J.
,
Farges
,
C.
, and
Fadiga
,
L.
,
2016
, “
Approximation of a Fractional Order Model by an Integer Order Model: A New Approach Taking Into Account Approximation Error as an Uncertainty
,”
J. Vib. Control
,
22
(
8
), pp.
2069
2082
.10.1177/1077546314566665
18.
Wei
,
Y. H.
,
Tse
,
P. W.
,
Du
,
B.
, and
Wang
,
Y.
,
2016
, “
An Innovative Fixed-Pole Numerical Approximation for Fractional Order Systems
,”
ISA Trans.
,
62
, pp.
94
102
.10.1016/j.isatra.2016.01.010
19.
Tavazoei
,
M. S.
,
2016
, “
Criteria for Response Monotonicity Preserving in Approximation of Fractional Order Systems
,”
IEEE/CAA J. Autom. Sin.
,
3
(
4
), pp.
422
429
.
20.
Deniz
,
F. N.
,
Alagoz
,
B. B.
,
Tan
,
N.
, and
Atherton
,
D. P.
,
2016
, “
An Integer Order Approximation Method Based on Stability Boundary Locus for Fractional Order Derivative/Integrator Operators
,”
ISA Trans.
,
62
, pp.
154
163
.10.1016/j.isatra.2016.01.020
21.
Liang
,
Y. S.
, and
Lu
,
J. L.
,
2017
, “
Direct Low Order Rational Approximations for Fractional Order Systems in Narrow Frequency Band: A Fix-Pole Method
,”
J. Circuits Syst. Comput.
,
26
(
04
), p.
1750065
.10.1142/S0218126617500657
22.
Du
,
B.
,
Wei
,
Y. H.
,
Liang
,
S.
, and
Wang
,
Y.
,
2017
, “
Rational Approximation of Fractional Order Systems by Vector Fitting Method
,”
Int. J. Control, Autom. Syst.
,
15
(
1
), pp.
186
195
.10.1007/s12555-015-0351-1
23.
Bourouba
,
B.
,
Ladaci
,
S.
, and
Chaabi
,
A.
,
2018
, “
Reduced-Order Model Approximation of Fractional-Order Systems Using Differential Evolution Algorithm
,”
J. Control, Autom. Electr. Syst.
,
29
(
1
), pp.
32
43
.10.1007/s40313-017-0356-5
24.
Fukunaga
,
M.
, and
Shimizu
,
N.
,
2019
, “
A Numerical Method for Caputo Differential Equations and Application of High-Speed Algorithm
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
9
), p.
091007
.10.1115/1.4043794
25.
Wei
,
Y. H.
,
Wang
,
J. C.
,
Tse
,
P. W.
, and
Wang
,
Y.
,
2019
, “
Modelling and Simulation of Nabla Fractional Dynamic Systems With Nonzero Initial Conditions
,”
Asian J. Control
, epub.10.1002/asjc.2232
26.
Li
,
A.
,
Wei
,
Y. H.
,
Wang
,
J. C.
, and
Wang
,
Y.
,
2020
, “
A Numerical Approximation Method for Fractional Order Systems With New Distributions of Zeros and Poles
,”
ISA Trans.
,
99
, pp.
20
27
.10.1016/j.isatra.2019.09.001
27.
Wei
,
Y. H.
,
Wang
,
J. C.
,
Liu
,
T. Y.
, and
Wang
,
Y.
,
2019
, “
Fixed Pole Based Modeling and Simulation Schemes for Fractional Order Systems
,”
ISA Trans.
,
84
, pp.
43
54
.10.1016/j.isatra.2018.10.001
28.
Xue
,
D. Y.
, and
Bai
,
L.
,
2017
, “
Benchmark Problems for Caputo Fractional-Order Ordinary Differential Equations
,”
Fract. Calculus Appl. Anal.
,
20
(
5
), pp.
1305
1312
.10.1515/fca-2017-0068
You do not currently have access to this content.