Abstract

Utility companies seek to increase energy efficiency and productivity and try to reduce peak loads. This often involves consumer-side demand management in residential areas using dynamic time-of-use (ToU) tariff. Such strategies work if the consumer-side response is at least partly automated using some real-time optimization strategy. Our paper proposes a consumer-side optimization and control framework for scheduling the electric appliances in a smart household and preserving a thermal comfort level through an electric heating system. Our framework consists of two optimization components interacting with each other. The first optimization component schedules the home appliances based on a mixed integer programming approach. An electric vehicle (EV) is considered as a special home appliance with an energy storage capability. The second optimization component is the model predictive control (MPC) strategy for the electric heating system, such that the input constraints are defined by the scheduling results of the first component. Due to outside temperature variations, the input constraints may impede the MPC to maintain the required thermal comfort, which triggers a rescheduling event for the first component. The efficiency of the framework is presented in multiple simulations for scenarios with different consumer behaviors.

References

1.
Georgiou
,
A.
,
Ioannou
,
P.
, and
Christodoulides
,
P.
,
2013
,
Domestic Electricity Consumption and the Public Awareness Factor
,
MSE Congress Plus
,
Nicosia, Cyprus
.
2.
Fang
,
X.
,
Misra
,
S.
,
Xue
,
G.
, and
Yang
,
D.
,
2012
, “
Smart Grid—The New and Improved Power Grid: A Survey
,”
IEEE Commun. Surv. Tutorials
,
14
(
4
), pp.
944
980
.10.1109/SURV.2011.101911.00087
3.
Iwayemi
,
A.
,
Yi
,
P.
,
Dong
,
X.
, and
Zhou
,
C.
,
2011
, “
Knowing When to Act: An Optimal Stopping Method for Smart Grid Demand Response
,”
IEEE Network
,
25
(
5
), pp.
44
49
.10.1109/MNET.2011.6033035
4.
Venkatesan
,
N.
,
Jignesh
,
S.
, and
Solanki
,
S.
,
2012
, “
Residential Demand Response Model and Impact on Voltage Profile and Losses of an Electric Distribution Network
,”
Appl. Energy
,
96
, pp.
84
91
.10.1016/j.apenergy.2011.12.076
5.
Stoustrup
,
J.
,
Annaswamy
,
A.
,
Chakrabortty
,
A.
, and
Qu
,
Z.
,
2019
,
Smart Grid Control, Overview and Research Opportunities
,
Springer Nature Switzerland AG
,
Cham, Switzerland
.
6.
Kabalci
,
Y.
,
2016
, “
A Survey on Smart Metering and Smart Grid Communication
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
302
318
.10.1016/j.rser.2015.12.114
7.
Sun
,
H.
,
Hatziargyriou
,
N.
,
Poor
,
H.
,
Carpanini
,
L.
, and
Fornié
,
M.
,
2016
, “
Smarter Energy: From Smart Metering to the Smart Grid
,” Institution of Engineering and Technology, UK.
8.
Vardakas
,
J. S.
,
Zorba
,
N.
, and
Verikoukis
,
C. V.
,
2015
, “
A Survey on Demand Response Programs in Smart Grids: Pricing Methods and Optimization Algorithms
,”
IEEE Commun. Surv. Tutorials
,
17
(
1
), pp.
152
178
.10.1109/COMST.2014.2341586
9.
Hu
,
Z.
,
Han
,
X.
, and
Wen
,
Q.
,
2013
,
Integrated Resource Strategic Planning and Power Demand-Side Management
, Vol.
80
,
Springer
,
Berlin, Germany
, p.
1
.
10.
Losi
,
A.
,
Mancarella
,
P.
, and
Vicino
,
A.
,
2015
,
Integration of Demand Response Into the Electricity Chain: Challenges, Opportunities, and Smart Grid Solutions
,
Wiley-ISTE
,
Hoboken, NJ
.
11.
Dutta
,
G.
, and
Mitra
,
K.
,
2017
, “
A Literature Review on Dynamic Pricing of Electricity
,”
J. Oper. Res. Soc.
,
68
(
10
), pp.
1131
1145
.10.1057/s41274-016-0149-4
12.
Borenstein
,
S.
,
Jaske
,
M.
, and
Rosenfeld
,
A.
,
2002
,
Dynamic Pricing, Advanced Metering, and Demand Response in Electricity Markets
,
Center for the Study of Energy Markets
,
UC, Berkeley, CA
.
13.
Wong
,
C.
,
Sen
,
S.
,
Ha
,
S.
, and
Chiang
,
M.
,
2012
, “
Optimized Day-Ahead Pricing for the Smart Grid With Device-Specific Scheduling Flexibility
,”
IEEE J. Sel. Areas Commun.
,
30
(
6
), pp.
1075
1085
.10.1109/JSAC.2012.120706
14.
Mohsenian-Rad
,
A.
, and
Leon-Garcia
,
A.
,
2010
, “
Optimal Residential Load Control With Price Prediction in Real-Time Electricity Pricing Environments
,”
IEEE Trans. Smart Grid
,
1
(
2
), pp.
120
133
.10.1109/TSG.2010.2055903
15.
Qian
,
L.
,
Wu
,
Y.
,
Zhang
,
Y.
, and
Huang
,
J.
,
2013
, “
Demand Response Management Via Real-Time Electricity Price Control in Smart Grids
,”
IEEE J. Sel. Areas Commun.
,
31
(
7
), pp.
1268
1280
.10.1109/JSAC.2013.130710
16.
Braithwait
,
S.
,
Hansen
,
D.
, and
O'Sheasy
,
M.
,
2007
,
Retail Electricity Pricing and Rate Design in Evolving Markets
,
Edison Electric Institute
,
Washington, DC
.
17.
Khan
,
A.
,
Mahmood
,
A.
,
Safdar
,
A.
,
Khan
,
Z.
, and
Khan
,
N.
,
2016
, “
Load Forecasting, Dynamic Pricing and DSM in Smart Grid: A Review
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
1311
1322
.10.1016/j.rser.2015.10.117
18.
Bayram
,
I.
, and
Ustun
,
T.
,
2017
, “
A Survey on Behind the Meter Energy Management Systems in Smart Grid
,”
Renewable Sustainable Energy Rev.
,
72
, pp.
1208
1232
.10.1016/j.rser.2016.10.034
19.
Azar
,
A.
,
Afsharchi
,
M.
,
Davoodi
,
M.
, and
Bigham
,
B.
,
2018
, “
A Multi-Objective Market-Driven Framework for Power Matching in the Smart Grid
,”
Eng. Appl. Artif. Intell.
,
70
, pp.
199
215
.10.1016/j.engappai.2018.02.003
20.
ISO
,
2000
, “
Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria
,” ISO, Geneva, Switzerland, Standard No. 7730:2005.
21.
Ferreira
,
P.
,
Ruano
,
A.
,
Silva
,
S.
, and
Conceição
,
E.
,
2012
, “
Neural Networks Based Predictive Control for Thermal Comfort and Energy Savings in Public Buildings
,”
Energy Build.
,
55
(
12
), pp.
238
251
.10.1016/j.enbuild.2012.08.002
22.
Khan
,
I. U.
,
Ma
,
X.
,
Taylor
,
C. J.
,
Javaid
,
N.
, and
Gamage
,
K. A. A.
,
2018
, “
Heuristic Algorithm Based Dynamic Scheduling Model of Home Appliances in Smart Grid
,” 24th International Conference on Automation and Computing (
ICAC
), Newcastle Upon Tyne, UK, Sept. 6–7, pp.
1
6
.10.23919/IConAC.2018.8749110
23.
Chen
,
Z.
,
Wu
,
L.
, and
Fu
,
Y.
,
2012
, “
Real-Time Price-Based Demand Response Management for Residential Appliances Via Stochastic Optimization and Robust Optimization
,”
IEEE Trans. Smart Grid
,
3
(
4
), pp.
1822
1831
.10.1109/TSG.2012.2212729
24.
Mohsenian-Rad
,
A.
,
Wong
,
V. W. S.
,
Jatskevich
,
J.
,
Schober
,
R.
, and
Leon-Garcia
,
A.
,
2010
, “
Autonomous Demand-Side Management Based on Game-Theoretic Energy Consumption Scheduling for the Future Smart Grid
,”
IEEE Trans. Smart Grid
,
1
(
3
), pp.
320
331
.10.1109/TSG.2010.2089069
25.
Jiang
,
Z.
,
Chinde
,
V.
,
Kohl
,
A.
,
Kelkar
,
A.
, and
Sarkar
,
S.
,
2020
, “
Supervisory Control and Distributed Optimization of Building Energy Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
10
), p. 101008.10.1115/1.4047448
26.
Parisio
,
A.
,
Varagnolo
,
D.
,
Molinari
,
M.
,
Pattarello
,
G.
,
Fabietti
,
L.
, and
Johansson
,
K. H.
,
2014
, “
Implementation of a Scenario-Based Mpc for Hvac Systems: An Experimental Case Study
,”
IFAC Proc. Vol.
,
47
(
3
), pp.
599
605
.10.3182/20140824-6-ZA-1003.02629
27.
Oldewurtel
,
F.
,
Sturzenegger
,
D.
, and
Morari
,
M.
,
2013
, “
Importance of Occupancy Information for Building Climate Control
,”
Appl. Energy
,
101
, pp.
521
532
.10.1016/j.apenergy.2012.06.014
28.
Rasmus
,
H.
,
Poulsen
,
N.
,
Madsen
,
H.
, and
Jorgensen
,
J.
,
2012
, “
Economic Model Predictive Control for Building Climate Control in Smart Grid
,”
IEEE Innovative Smart Grid Technol.
, Washington, DC, Jan. 16–20, pp.
1
6
.10.1109/ISGT.2012.6175631
29.
Cai
,
J.
,
Kim
,
D.
,
Jaramillo
,
R.
,
Braun
,
J. E.
, and
Hu
,
J.
,
2016
, “
A General Multi-Agent Control Approach for Building Energy System Optimization
,”
Energy Build.
,
127
, pp.
337
351
.10.1016/j.enbuild.2016.05.040
30.
Zong
,
Y.
,
Kullmann
,
D.
,
Thavlov
,
A.
,
Gehrke
,
O.
, and
Bindner
,
H. W.
,
2012
, “
Application of Model Predictive Control for Active Load Management in a Distributed Power System With High Wind Penetration
,”
IEEE Trans. Smart Grid
,
3
(
2
), pp.
1055
1062
.10.1109/TSG.2011.2177282
31.
Perez
,
K. X.
,
Baldea
,
M.
, and
Edgar
,
T. F.
,
2016
, “
Integrated Hvac Management and Optimal Scheduling of Smart Appliances for Community Peak Load Reduction
,”
Energy Build.
,
123
, pp.
34
40
.10.1016/j.enbuild.2016.04.003
32.
Chen
,
C.
,
Wang
,
J.
,
Heo
,
Y.
, and
Kishore
,
S.
,
2013
, “
MPC-Based Appliance Scheduling for Residential Building Energy Management Controller
,”
IEEE Trans. Smart Grid
,
4
(
3
), pp.
1401
1410
.10.1109/TSG.2013.2265239
33.
Costanzo
,
G. T.
,
Zhu
,
G.
,
Anjos
,
M. F.
, and
Savard
,
G.
,
2012
, “
A System Architecture for Autonomous Demand Side Load Management in Smart Buildings
,”
IEEE Trans. Smart Grid
,
3
(
4
), pp.
2157
2165
.10.1109/TSG.2012.2217358
34.
Rasheed
,
M. B.
,
Javaid
,
N.
,
Ahmad
,
A.
,
Jamil
,
M.
,
Khan
,
Z. A.
,
Qasim
,
U.
, and
Alrajeh
,
N.
,
2016
, “
Energy Optimization in Smart Homes Using Customer Preference and Dynamic Pricing
,”
Energies
,
9
(
8
), p.
593
.10.3390/en9080593
35.
Drgoňa
,
J.
,
Picard
,
D.
,
Kvasnica
,
M.
, and
Helsen
,
L.
,
2018
, “
Approximate Model Predictive Building Control Via Machine Learning
,”
Appl. Energy
,
218
, pp.
199
216
.10.1016/j.apenergy.2018.02.156
36.
Mayne
,
D. Q.
,
2015
, “
Robust and Stochastic MPC: Are We Going in the Right Direction?
,”
IFAC-PapersOnLine
,
48
(
23
), pp.
1
8
.10.1016/j.ifacol.2015.11.255
37.
Moroşan
,
P.-D.
,
Bourdais
,
R.
,
Dumur
,
D.
, and
Buisson
,
J.
,
2010
, “
Building Temperature Regulation Using a Distributed Model Predictive Control
,”
Energy Build.
,
42
(
9
), pp.
1445
1452
.10.1016/j.enbuild.2010.03.014
38.
Rajakaruna
,
S.
,
Shahnia
,
F.
, and
Ghosh
,
A.
,
2016
,
Plug in Electric Vehicles in Smart Grids
,
Springer
,
Singapore
.
39.
Taik
,
S.
, and
Kiss
,
B.
,
2020
, “
Household Electricity Usage Optimization Using Mpc and Mixed Integer Programming
,”
Akadémiai Kiadó
,
15
(
1
), pp.
136
147
.
40.
Tomic
,
K.
, and
Kempton
,
W.
,
2005
, “
Vehicle-to-Grid Power Implementation: From Stabilizing the Grid to Supporting Large-Scale Renewable Energy
,”
J. Power Sources
,
144
(
1
), pp.
280
294
.10.1016/j.jpowsour.2004.12.022
41.
Dhameja
,
S.
, ed.,
2002
,
Electric Vehicle Battery Systems
,
Elsevier
,
Amsterdam, The Netherlands
.
42.
Qi
,
F.
,
Jin
,
X.
,
Mu
,
Y.
,
Jia
,
H.
,
Xu
,
X.
,
Yu
,
X.
, and
Wang
,
T.
,
2017
, “
Model Predictive Control Approach for Building Microgrid Considering Dynamic Thermal Characteristics of Building
,”
Energy Procedia
,
105
(
05
), pp.
2785
2790
.10.1016/j.egypro.2017.03.599
43.
Mahapatra
,
B.
, and
Nayyar
,
A.
,
2019
, “
Home Energy Management System (Hems): Concept, Architecture, Infrastructure, Challenges and Energy Management Schemes
,”
Energy Syst.
,
11
(
1
), pp.
1
27
.10.1007/s12667-019-00364-w
44.
Taik
,
S.
, and
Kiss
,
B.
,
2019
, “
Smart Household Electricity Usage Optimization Using Mpc and Milp
,”
In 2019 22nd International Conference on Process Control (PC19)
, pp.
31
36
.
45.
Daina
,
N.
,
Sivakumar
,
A.
, and
Polak
,
J.
,
2017
, “
Electric Vehicle Charging Choices: Modeling and Implication for Smart Charging Services
,”
Transport. Res. Part C
,
81
, pp.
36
56
.10.1016/j.trc.2017.05.006
46.
Fotouhi Ghazvini
,
M. A.
,
Soares
,
J.
,
Abrishambaf
,
O.
,
Castro
,
R.
, and
Vale
,
Z.
,
2017
, “
Demand Response Implementation in Smart Households
,”
Energy Build.
,
143
, pp.
129
148
.10.1016/j.enbuild.2017.03.020
47.
Paterakis
,
N. G.
,
Erdinç
,
O.
,
Pappi
,
I. N.
,
Bakirtzis
,
A. G.
, and
Catalão
,
J. P. S.
,
2016
, “
Coordinated Operation of a Neighborhood of Smart Households Comprising Electric Vehicles, Energy Storage and Distributed Generation
,”
IEEE Trans. Smart Grid
,
7
(
6
), pp.
2736
2747
.10.1109/TSG.2015.2512501
48.
Paudyal
,
P.
, and
Ni
,
Z.
,
2019
, “
Smart Home Energy Optimization With Incentives Compensation From Inconvenience for Shifting Electric Appliances
,”
Int. J. Electr. Power Energy Syst.
,
109
, pp.
652
660
.10.1016/j.ijepes.2019.02.016
49.
Lu
,
X.
,
Zhou
,
K.
,
Chan
,
F. T.
, and
Yang
,
S.
,
2017
, “
Optimal Scheduling of Household Appliances for Smart Home Energy Management Considering Demand Response
,”
Nat. Hazards
,
88
(
3
), pp.
1639
1653
.10.1007/s11069-017-2937-9
50.
Lofberg
,
J.
,
2004
, “
Yalmip: A Toolbox for Modeling and Optimization in Matlab
,”
IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508)
, Vol.
3
,
New Orleans, LA
,
Sept. 2–4
, pp.
284
289
.10.1109/CACSD.2004.1393890
51.
Johra
,
H.
, and
Heiselberg
,
P.
,
2018
, “
Description and Validation of a Matlab-Simulink Single Family House Energy Model With Furniture and Phase Change Materials (Update)
,” Aalborg University, Aalbor, Denmark.
52.
Electric Vehicle and Database
,
2020
, “Nissan Leaf 24 kWh,” accessed July 9, 2020 https://ev-database.org/car/1019/Nissan-Leaf-24-kWh
You do not currently have access to this content.