Abstract

In this article, we devise a variant of the extended Kalman filter that can be generally applied to systems on manifolds with simplicity and low computational cost. We extend a given system on a manifold to an ambient open set in Euclidean space and modify the system such that the extended system is transversely stable on the manifold. Then, we apply the standard extended Kalman filter derived in Euclidean space to the modified dynamics. This method is efficient in terms of computation and accurate in comparison with the standard extended Kalman filter. It has the merit that we can apply various Kalman filters derived in Euclidean space including extended Kalman filters for state estimation for systems defined on manifolds. The proposed method is successfully applied to the rigid body attitude dynamics whose configuration space is the special orthogonal group in three dimensions.

References

1.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
35
45
.10.1115/1.3662552
2.
Grewal
,
M. S.
, and
Andrews
,
A. P.
,
2014
,
Kalman Filtering: Theory and Practice With MATLAB
,
Wiley, Hoboken, NJ
.
3.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
,
1997
, “
New Extension of the Kalman Filter to Nonlinear Systems
,”
Signal Processing, Sensor Fusion, Target Recognition VI
,
3068
, pp.
182
193
. In International Society for Optics and Photonics.10.1117/12.280797
4.
Gustafsson
,
F.
, and
Hendeby
,
G.
,
2012
, “
Some Relations Between Extended and Unscented Kalman Filters
,”
IEEE Trans. Signal Process.
,
60
(
2
), pp.
545
555
.10.1109/TSP.2011.2172431
5.
Fiorenzani
,
T.
,
Manes
,
C.
,
Oriolo
,
G.
, and
Peliti
,
P.
,
2008
, “
Comparative Study of Unscented Kalman Filter and Extended Kalman Filter for Position/Attitude Estimation in Unmanned Aerial Vehicles
,” Institute for Systems Analysis and Computer Science (
IASI-CNR
), Rome, Italy, June 14–17, p.
08
.
6.
Chang
,
D. E.
, and
Eun
,
Y.
,
2017
, “
Global Chartwise Feedback Linearization of the Quadcopter With a Thrust Positivity Preserving Dynamic Extension
,”
IEEE Trans. Autom. Control
,
62
(
9
), pp.
4747
4752
.10.1109/TAC.2017.2683265
7.
Lee
,
T.
,
Leok
,
M.
, and
McClamroch
,
N. H.
,
2011
, “
Stable Manifolds of Saddle Equilibria for Pendulum Dynamics on S2 and SO(3)
,”
50th IEEE Conference on Decision and Control and European Control Conference
, Orlando, FL, Dec.12–15, pp.
3915
3921
. 10.1109/CDC.2011.6160530
8.
Barrau
,
A.
, and
Bonnabel
,
S.
,
2018
, “
Invariant Kalman Filtering
,”
Annu. Rev. Control, Rob., Auton. Syst.
,
1
(
1
), pp.
237
257
.10.1146/annurev-control-060117-105010
9.
Jeon
,
S.
,
Tomizuka
,
M.
, and
Katou
,
T.
,
2009
, “
Kinematic Kalman Filter (KKF) for Robot End-Effector Sensing
,”
ASME J. Dyn. Sys., Meas., Control
,
131
(
2
), p.
021010
.10.1115/1.3023124
10.
Sipos
,
B. J.
,
2008
, “
Application of the Manifold-Constrained Unscented Kalman Filter
,”
IEEE/ION Position, Location and Navigation Symposium
, Monterey, CA, May 5–8, pp.
30
43
. 10.1109/PLANS.2008.4569967
11.
St-Pierre
,
M.
, and
Gingras
,
D.
,
2004
, “
Comparison Between the Unscented Kalman Filter and the Extended Kalman Filter for the Position Estimation Module of an Integrated Navigation Information System
,”
IEEE Intelligent Vehicles Symposium
, Parma, Italy, June 14–17, pp.
831
835
.10.1109/IVS.2004.1336492
12.
Chang
,
D. E.
,
Jiménez
,
F.
, and
Perlmutter
,
M.
,
2016
, “
Feedback Integrators
,”
J. Nonlinear Sci.
,
26
(
6
), pp.
1693
1721
.10.1007/s00332-016-9316-7
13.
Chang
,
D. E.
,
2018
, “
On Controller Design for Systems on Manifolds in Euclidean Space
,”
Int. J. Rob. Nonlinear Control
,
28
(
16
), pp.
4981
4998
.10.1002/rnc.4294
14.
Lewis
,
F. L.
,
Xie
,
L.
, and
Popa
,
D.
,
2017
,
Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory
,
CRC Press
, New York.
15.
Tichavsky
,
P.
,
Muravchik
,
C. H.
, and
Nehorai
,
A.
,
1998
, “
Posterior Cramér-Rao Bounds for Discrete-Time Nonlinear Filtering
,”
IEEE Trans. Signal Process.
,
46
(
5
), pp.
1386
1396
.10.1109/78.668800
16.
Gene
,
H. G.
, and
Charles
,
F.
,
1996
,
Matrix Computations
, Johns Hopkins University Press, Baltimore, MD.
17.
Nguyen
,
T.
,
Mann
,
G. K. I.
,
Vardy
,
A.
, and
Gosine
,
R. G.
,
2019
, “
Developing Computationally Efficient Nonlinear Cubature Kalman Filtering for Visual Inertial Odometry
,”
ASME J. Dyn. Sys., Meas., Control.
,
141
(
8
), p.
081012
.10.1115/1.4042951
18.
Bernstein
,
D. S.
,
2009
,
Matrix Mathematics: Theory, Facts, and Formulas
,
Princeton University Press
, Princeton, NJ.
You do not currently have access to this content.