Abstract

Accurate locating of the weld seam under strong noise is the biggest challenge for automated welding. In this paper, we construct a robust seam detector on the framework of deep learning object detection algorithm. The representative object algorithm, a single shot multibox detector (SSD), is studied to establish the seam detector framework. The improved SSD is applied to seam detection. Under the SSD object detection framework, combined with the characteristics of the seam detection task, the multifeature combination network (MFCN) is proposed. The network comprehensively utilizes the local information and global information carried by the multilayer features to detect a weld seam and realizes the rapid and accurate detection of the weld seam. To solve the problem of single-frame seam image detection algorithm failure under continuous super-strong noise, the sequence image multifeature combination network (SMFCN) is proposed based on the MFCN detector. The recurrent neural network (RNN) is used to learn the temporal context information of convolutional features to accurately detect the seam under continuous super-noise. Experimental results show that the proposed seam detectors are extremely robust. The SMFCN can maintain extremely high detection accuracy under continuous super-strong noise. The welding results show that the laser vision seam tracking system using the SMFCN can ensure that the welding precision meets industrial requirements under a welding current of 150 A.

References

1.
Lin
,
X.
,
Wang
,
Z.
, and
Ji
,
Y.
,
2015
, “
A Novel Center Line Extraction Algorithm on Structured Light Strip Based on Anisotropic Heat Diffusion
,”
Adv. Intell. Syst. Comput.
,
363
, pp.
295
302
.10.1007/978-3-319-18997-0_25
2.
Wu
,
Q.-Q.
,
Lee
,
J.-P.
,
Park
,
M.-H.
,
Jin
,
B.-J.
,
Kim
,
D.-H.
,
Park
,
C.-K.
, and
Kim
,
I.-S.
,
2015
, “
A Study on the Modified Hough Algorithm for Image Processing in Weld Seam Tracking
,”
J. Mech. Sci. Technol.
,
29
(
11
), pp.
4859
4865
.10.1007/s12206-015-1033-x
3.
Zhang
,
L.
,
Ke
,
W.
,
Ye
,
Q.
, and
Jiao
,
J.
,
2014
, “
A Novel Laser Vision Sensor for Weld Line Detection on Wall-Climbing Robot
,”
Opt. Laser Technol.
,
60
, pp.
69
79
.10.1016/j.optlastec.2014.01.003
4.
Li
,
X.
,
Li
,
X.
,
Ge
,
S. S.
,
Khyam
,
M. O.
, and
Luo
,
C.
,
2017
, “
Automatic Welding Seam Tracking and Identification
,”
IEEE Trans. Ind. Electron.
,
64
(
9
), pp.
7261
7271
.10.1109/TIE.2017.2694399
5.
Zou
,
Y.
,
Li
,
J.
, and
Chen
,
X.
,
2017
, “
Seam Tracking Investigation Via Striped Line Laser Sensor
,”
Ind. Robot Int. J.
,
44
(
5
), pp.
609
617
.10.1108/IR-11-2016-0294
6.
Zou
,
Y.
,
Chen
,
X.
,
Gong
,
G.
, and
Li
,
J.
,
2018
, “
A Seam Tracking System Based on a Laser Vision Sensor
,”
Measurement
,
127
, pp.
489
500
.10.1016/j.measurement.2018.06.020
7.
Zou
,
Y.
,
Li
,
J.
,
Chen
,
X.
, and
Lan
,
R.
,
2018
, “
Learning Siamese Networks for Laser Vision Seam Tracking
,”
J. Opt. Soc. Am. A Opt. Image Sci.
,
35
(
11
), pp.
1805
1813
.10.1364/JOSAA.35.001805
8.
Zou
,
Y.
,
Lan
,
R. U. I.
,
Wei
,
X.
, and
Chen
,
J.
,
2020
, “
Robust Seam Tracking Via a Deep Learning Framework Combining Tracking and Detection
,”
Appl. Opt.
,
59
(
14
), pp.
4321
4331
.].10.1364/AO.389730
9.
Girshick
,
R.
,
Donahue
,
J.
, and
Darrell
,
T.
,
2014
, “
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
,” IEEE Conference on Computer Vision and Pattern Recognition (
CVPR
), Columbus, OH, June 23–28, pp.
580
587
.10.1109/CVPR.2014.81
10.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2015
, “
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
37
(
9
), pp.
1904
1916
.10.1109/TPAMI.2015.2389824
11.
Girshick
,
R.
,
2016
, “
Fast R-CNN
,” IEEE International Conference on Computer Vision (
ICCV
), Santiago, Chile, Dec. 7–13, pp.
1440
1448
.10.1109/ICCV.2015.169
12.
Ren
,
S.
,
He
,
K.
,
Girshick
,
R.
, and
Sun
,
J.
,
2017
, “
Faster R-CNN: Towards Real-Time Object Detection With Region Proposal Networks
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
39
(
6
), pp.
1137
1149
.10.1109/TPAMI.2016.2577031
13.
Redmon
,
J.
,
Divvala
,
S.
, and
Girshick
,
R.
,
2016
, “
You Only Look Once: Unified, real-Time Object Detection
,” IEEE Conference on Computer Vision and Pattern Recognition (
CVPR
), Las Vegas, NV, June 27–30, pp.
779
788
.10.1109/CVPR.2016.91
14.
LiuAnguelov
,
W.
, and
Erhan
,
D. D.
,
2016
, “
SSD: Single Shot Multibox Detector
,”
14th European Conference on Computer Vision (ECCV)
, Amsterdam, The Netherlands, Oct. 8–16, pp.
21
37
.
15.
Liu
,
L.
,
Ouyang
,
W.
, and
Wang
,
X.
,
2018
, “
Deep Learning for Generic Object Detection: A Survey
,” Springer, Dordrecht, The Netherlands, accessed Oct. 31, 2019, https://arxiv.org/abs/1809.02165
16.
Kang
,
K.
,
Ouyang
,
W.
, and
Li
,
H.
,
2016
, “
Object Detection From Video Tubelets With Convolutional Neural Networks
,” IEEE Conference on Computer Vision and Pattern Recognition (
CVPR
),
Las Vegas, NV
, June 27–30, pp.
817
825
.10.1109/CVPR.2016.95
17.
Tripathi
,
S.
,
Lipton
,
Z. C.
,
Belongie
,
S.
, and
Nguyen
,
T.
,
2016
, “
Context Matters: Refining Object Detection in Video With Recurrent Neural Networks
,” eprint https://arxiv.org/abs/1607.04648
18.
Simonyan
,
K.
, and
Zisserman
,
A.
,
2014
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,” International Conference on Learning Representations (ICLR), San Diego, CA, May
7
9
.
19.
Ioffe
,
S.
, and
Szegedy
,
C.
,
2015
, “
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
,” International Conference on Machine Learning (ICML), Lille, France, July
6
11
.
20.
Yu
,
F.
, and
Koltun
,
V.
,
2015
, “
Multi-Scale Context Aggregation by Dilated Convolutions
,” International Conference on Learning Representations (
ICLR
), San Juan, Puerto Rico.https://arxiv.org/abs/1511.07122
21.
Fu
,
C.
,
Liu
,
W.
, and
Ranga
,
A.
,
2017
, “
DSSD: Deconvolutional Single Shot Detector
,” eprint https://arxiv.org/abs/1701.06659
22.
GidarisKomodakis
,
S. N.
,
2015
, “
Object Detection Via a Multi-Region and Semantic Segmentation-Aware CNN Model
,” IEEE International Conference on Computer Vision (
ICCV
),
Santiago, Chile
, Dec. 7–13, pp.
1134
1142
.10.1109/ICCV.2015.135
23.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.10.1162/neco.1997.9.8.1735
24.
Goldberg
,
Y.
,
2016
, “
A Primer on Neural Network Models for Natural Language Processing
,”
J. Artif. Intell. Res.
,
57
, pp.
345
420
.10.1613/jair.4992
25.
Wu
,
Y.
,
Schuster
,
M.
,
Chen
,
Z.
, and
Le
,
Q.
,
2016
, “
Google's Neural Machine Translation System: Bridging the Gap Between Human and Machine Translation
,” eprint https://arxiv.org/abs/1609.08144
26.
Bengio
,
Y.
,
Simard
,
P.
, and
Frasconi
,
P.
,
1994
, “
Learning Long-Term Dependencies With Gradient Descent is Difficult
,”
IEEE Trans. Neural Networks
,
5
(
2
), pp.
157
166
.10.1109/72.279181
27.
Chovan Merrienboer
,
K.
,
Bahdanau
,
B.
, and
Bengio
,
D. Y.
,
2014
, “
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches
,” eprint https://arxiv.org/abs/1409.1259
28.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst., Man, Cybern.
,
9
(
1
), pp.
62
66
.10.1109/TSMC.1979.4310076
You do not currently have access to this content.