Abstract

The vehicle transfer case clutch plays an important role for four-wheel drive (4WD) vehicles since the torque transmitted through the clutch determines the amount of traction torque on tires, which is important for vehicle performance. However, the clutch torque measurement is usually unavailable on production vehicles and needs to be estimated accurately to improve vehicle performance. This paper proposes a unified scheme to model clutch output torque under all three conditions: open (no torque output), slipping, and overtaken. Specifically, the clutch torque model under clutch overtaken condition is first investigated using the vehicle longitudinal and tire dynamics. It was found that effective radius of front tires, powered by the transfer case clutch torque, cannot be assumed as constant and should be compensated by vehicle acceleration, while the effective radius of rear tires connected directly to the propulsion system does not need to be compensated. In addition, it was found that torque model under clutch overtaken condition cannot be used under slip condition. As a result, a general clutch torque model is developed for both slip and overtaken conditions with a clutch slip speed compensation, resulting a root-mean-square error percentage (RMSE%) of 6.8% comparing with the experimental measurement data. Note that overtaken torque model is a special case of the general torque model by setting slip speed equal to zero. The general clutch torque model is able to calculate clutch output torque accurately under both slip and overtaken conditions.

References

1.
Kim
,
D.
,
Hwang
,
S.
, and
Kim
,
H.
,
2008
, “
Vehicle Stability Enhancement of Four-Wheel-Drive Hybrid Electric Vehicle Using Rear Motor Control
,”
IEEE Trans. Veh. Technol.
,
57
(
2
), pp.
727
735
.10.1109/TVT.2007.907016
2.
Mohan
,
S.
,
2000
, “
All-Wheel Drive/Four-Wheel Drive Systems and Strategies
,”
FISITA World Automotive Congress, Seoul, South Korea,
June 12–15, pp.
12
15
.
3.
Ning
,
X. B.
,
Fu
,
Z. J.
, and
Li
,
B.
,
2018
, “
High Performance Torque Controller Design for AC Driving 4WD Electric Vehicle in Two Time Scales
,”
IJMIC
,
30
(
1
), pp.
9
18
.10.1504/IJMIC.2018.10014596
4.
da Silva
,
S.
, and
Filgueira
,
E.
,
2018
, “
Modeling and Simulation of the Performance and Efficiency of a Sport Utility Vehicle Powertrain With Automatic Transmission Through Model-Based Design
,” 13th IEEE International Conference on Industry Applications (
INDUSCON
), Sao Paulo, Brazil, Nov. 12–14, pp.
1128
1132
10.1109/INDUSCON.2018.8627243.
5.
Miao
,
C.
,
Liu
,
H.
,
Zhu
,
G. G.
, and
C
,
H.
,
2018
, “
Connectivity-Based Optimization of Vehicle Route and Speed for Improved Fuel Economy
,”
Transp. Res. Part C
,
91
, pp.
353
368
.10.1016/j.trc.2018.04.014
6.
Zhu
,
G. G.
, and
Miao
,
C.
,
2019
, “
Real-Time Co-Optimization of Vehicle Route and Speed Using Generic Algorithm for Improved Fuel Economy
,”
Mech. Eng.
,
141
(
3
), pp.
S08
S15
.10.1115/1.2019-MAR-4
7.
Panzani
,
G.
,
Corno
,
M.
,
Tanelli
,
M.
,
Zappavigna
,
A.
,
Savaresi
,
S. M.
,
Fortina
,
A.
, and
Campo
,
S.
,
2010
, “
Designing on-Demand Four-Wheel-Drive Vehicles Via Active Control of the Central Transfer Case
,”
IEEE Trans. Intell. Transp. Syst.
,
11
(
4
), pp.
931
941
.10.1109/TITS.2010.2055858
8.
Wei
,
W.
,
Dourra
,
H.
, and
Zhu
,
G.
,
2020
, “
Deadbeat Adaptive Backstepping Design for Tracking Transfer Case Torque and Estimating Its Clutch Touchpoint
,” IEEE Conference on Control Technology and Applications (
CCTA
), Montreal, QC, Canada, Aug. 24–26, pp.
188
193
.10.1109/CCTA41146.2020.9206164
9.
Zhao
,
Z.
,
He
,
L.
,
Yang
,
Y.
,
Wu
,
C.
,
Li
,
X.
, and
Karl Hedrick
,
J.
,
2016
, “
Estimation of Torque Transmitted by Clutch During Shifting Process for Dry Dual Clutch Transmission
,”
Mech. Syst. Signal Process.
,
75
, pp.
413
433
.10.1016/j.ymssp.2015.12.027
10.
Wei
,
W.
,
Dourra
,
H.
, and
Zhu
,
G. G.
,
2020
, “
Adaptive Transfer Case Clutch Touchpoint Estimation With a Modified Friction Model
,”
IEEE/ASME Trans. Mechatronics
,
25
(
4
), pp.
2000
2008
.10.1109/TMECH.2020.2993282
11.
Song
,
X.
,
Sun
,
Z.
,
Yang
,
X.
, and
Zhu
,
G.
,
2010
, “
Modelling, Control, and Hardware-in-the-Loop Simulation of an Automated Manual Transmission
,”
Proc. Inst. Mech. Eng., Part D
,
224
(
2
), pp.
143
160
.10.1243/09544070JAUTO1284
12.
Xu
,
X.
,
Liang
,
Y.
,
Jordan
,
M.
,
Tenberge
,
P.
, and
Dong
,
P.
,
2019
, “
Optimized Control of Engine Start Assisted by the Disconnect Clutch in a p2 Hybrid Automatic Transmission
,”
Mech. Syst. Signal Process.
,
124
, pp.
313
329
.10.1016/j.ymssp.2019.01.052
13.
Rajamani
,
R.
,
2012
,
Vehicle Dynamics and Control
,
Springer
, Boston, MA.
14.
Mashadi
,
B.
, and
Crolla
,
D. A.
,
2012
,
Vehicle Powertrain Systems
,
Wiley
,
London
.
15.
Yang
,
S.
,
Lu
,
Y.
, and
Li
,
S.
,
2013
, “
An Overview on Vehicle Dynamics
,”
Int. J. Dyn. Control
,
1
(
4
), pp.
385
395
.10.1007/s40435-013-0032-y
16.
Pacejka
,
H.
,
2005
,
Tire and Vehicle Dynamics
,
Elsevier
, Waltham, MA.
17.
El Tannoury
,
C.
,
Plestan
,
F.
,
Moussaoui
,
S.
, and
Romani
,
N.
,
2011
, “
Tyre Effective Radius and Vehicle Velocity Estimation: A Variable Structure Observer Solution
,”
Eighth International Multi Conference on Systems, Signals and Devices
, Sousse, Tunisia, Mar. 22–25, pp.
1
6
.10.1109/SSD.2011.5767491
18.
Jo
,
K.
,
Chu
,
K.
,
Kim
,
J.
, and
Sunwoo
,
M.
,
2011
, “
Distributed Vehicle State Estimation System Using Information Fusion of GPS and in-Vehicle Sensors for Vehicle Localization
,” 14th International IEEE Conference on Intelligent Transportation Systems (
ITSC
), Washington, DC, Oct. 5–7, pp.
2009
2014
.10.1109/ITSC.2011.6083010
19.
Wenzel
,
T. A.
,
Burnham
,
K. J.
,
Blundell
,
M. V.
, and
Williams
,
R. A.
,
2006
, “
Dual Extended Kalman Filter for Vehicle State and Parameter Estimation
,”
Veh. Syst. Dyn.
,
44
(
2
), pp.
153
171
.10.1080/00423110500385949
20.
Berntorp
,
K.
, and
Di Cairano
,
S.
,
2019
, “
Tire Stiffness and Vehicle-State Estimation Based on Noise-Adaptive Particle Filtering
,”
IEEE Trans. Control Syst. Technol.
,
27
(
3
), pp.
1100
1114
.10.1109/TCST.2018.2790397
21.
Carlson
,
C. R.
, and
Gerdes
,
J. C.
,
2005
, “
Consistent Nonlinear Estimation of Longitudinal Tire Stiffness and Effective Radius
,”
IEEE Trans. Control Syst. Technol.
,
13
(
6
), pp.
1010
1020
.10.1109/TCST.2005.857408
22.
Blundell
,
M.
, and
Harty
,
D.
,
2004
,
Multibody Systems Approach to Vehicle Dynamics
,
Elsevier
, Waltham, MA.
23.
Tannoury
,
C. E.
,
Moussaoui
,
S.
,
Plestan
,
F.
,
Romani
,
N.
, and
Pita-Gil
,
G.
,
2013
, “
Synthesis and Application of Nonlinear Observers for the Estimation of Tire Effective Radius and Rolling Resistance of an Automotive Vehicle
,”
IEEE Trans. Control Syst. Technol.
,
21
(
6
), pp.
2408
2416
.10.1109/TCST.2012.2232669
24.
Lundquist
,
C.
,
Karlsson
,
R.
,
Ozkan
,
E.
, and
Gustafsson
,
F.
,
2014
, “
Tire Radii Estimation Using a Marginalized Particle Filter
,”
IEEE Trans. Intell. Transp. Syst.
,
15
(
2
), pp.
663
672
.10.1109/TITS.2013.2284930
25.
Jazar
,
R. N.
,
2017
,
Vehicle Dynamics: Theory and Application
,
Springer
, London.
26.
Gent
,
A. N.
, and
Walter
,
J. D.
,
2006
, “Pneumatic Tire,” The University of Akron,
Mechanical Engineering Faculty Research,
854.https://ideaexchange.uakron.edu/mechanical_ideas/854
You do not currently have access to this content.