Abstract

This paper presents a two-step optimization-based design method for iterative learning control and applies it onto the quadrotor unmanned aerial vehicles (UAVs) trajectory tracking problem. Iterative learning control aims to improve the tracking performance through learning from errors over iterations in repetitively operated systems. The tracking errors from previous iterations are injected into a learning filter and a robust filter to generate the learning signal. The design of the two filters usually involves nontrivial tuning work. This paper presents a new two-optimization design method for the iterative learning control, which is easy to obtain and implement. In particular, the learning filter design problem is transferred into a feedback controller design problem for a purposely constructed system, which is solved based on H-infinity optimal control theory thereafter. The robust filter is then obtained by solving an additional optimization to guarantee the learning convergence. Through the proposed design method, the learning performance is optimized and the system's stability is guaranteed. The proposed two-step optimization-based design method and the regarding iterative learning control algorithm are validated by both numerical and experimental studies.

References

1.
Liang
,
X.
,
2019
, “
Image-Based Post-Disaster Inspection of Reinforced Concrete Bridge Systems Using Deep Learning With Bayesian Optimization
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
34
(
5
), pp.
415
430
.10.1111/mice.12425
2.
Sajedi
,
S. O.
, and
Liang
,
X.
,
2020
, “
Vibration-Based Semantic Damage Segmentation for Large-Scale Structural Health Monitoring
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
35
(
6
), pp.
579
596
.10.1111/mice.12523
3.
Sajedi
,
S. O.
, and
Liang
,
X.
,
2020
, “
Uncertainty-Assisted Deep Vision Structural Health Monitoring
,”
Comput.-Aided Civ. Infrastruct. Eng.
, epub.
4.
Sajedi
,
S. O.
, and
Liang
,
X.
,
2020
, “
A Data-Driven Framework for Near Real-Time and Robust Damage Diagnosis of Building Structures
,”
Struct. Control Health Monit.
,
27
(
3
), p.
e2488
.10.1002/stc.2488
5.
Babu
,
V. M.
,
Das
,
K.
, and
Kumar
,
S.
,
2017
, “
Designing of Self Tuning PID Controller for AR Drone Quadrotor
,” 18th International Conference on Advanced Robotics (
ICAR
),
IEEE
, Hong Kong, China, July 10–12, pp.
167
172
.10.1109/ICAR.2017.8023513
6.
Goodarzi
,
F. A.
,
Lee
,
D.
, and
Lee
,
T.
,
2015
, “
Geometric Adaptive Tracking Control of a Quadrotor Unmanned Aerial Vehicle on SE (3) for Agile Maneuvers
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
9
), p. 091007.10.1115/1.4030419
7.
Dong
,
W.
,
Ding
,
Y.
,
Yang
,
L.
,
Sheng
,
X.
, and
Zhu
,
X.
,
2019
, “
An Efficient Approach for Stability Analysis and Parameter Tuning in Delayed Feedback Control of a Flying Robot Carrying a Suspended Load
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
8
), p.
081015
.10.1115/1.4043223
8.
Zhao
,
W.
, and
Go
,
T. H.
,
2014
, “
Quadcopter Formation Flight Control Combining Mpc and Robust Feedback Linearization
,”
J. Franklin Inst.
,
351
(
3
), pp.
1335
1355
.10.1016/j.jfranklin.2013.10.021
9.
Lyu
,
X.
,
Zheng
,
M.
, and
Zhang
,
F.
,
2018
, “
H-∞ Based Disturbance Observer Design for Non-Minimum Phase Systems With Application to UAV Attitude Control
,” Annual American Control Conference (
ACC
), Milwaukee, WI, pp.
3683
3689
.10.23919/ACC.2018.8431503
10.
He
,
X.
,
Kou
,
G.
,
Calaf
,
M.
, and
Leang
,
K. K.
,
2019
, “
In-Ground-Effect Modeling and Nonlinear-Disturbance Observer for Multirotor Unmanned Aerial Vehicle Control
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
7
), p.
071013
.10.1115/1.4043221
11.
Zheng
,
M.
,
Lyu
,
X.
,
Liang
,
X.
, and
Zhang
,
F.
, “
A Generalized Design Method for Learning-Based Disturbance Observer
,”
IEEE/ASME Trans. Mechatronics
, epub.10.1109/TMECH.2020.2999340
12.
Mishra
,
S.
,
Rakstad
,
T.
, and
Zhang
,
W.
,
2019
, “
Robust Attitude Control for Quadrotors Based on Parameter Optimization of a Nonlinear Disturbance Observer
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
8
), p.
081003
.10.1115/1.4042741
13.
Ahn
,
H.-S.
,
Chen
,
Y.
, and
Moore
,
K. L.
,
2007
, “
Iterative Learning Control: Brief Survey and Categorization
,”
IEEE Trans. Syst., Man, Cybern., Part C
,
37
(
6
), pp.
1099
1121
.10.1109/TSMCC.2007.905759
14.
Bristow
,
D. A.
,
Tharayil
,
M.
, and
Alleyne
,
A. G.
,
2006
, “
A Survey of Iterative Learning Control
,”
IEEE Control Syst. Mag.
,
26
(
3
), pp.
96
114
.
15.
Liang
,
X.
, and
Zheng
,
M.
,
2019
, “
Estimation of Rail Vertical Profile Using an h-Infinity Based Optimization With Learning
,”
ASME
Paper No. JRC2019-1266.10.1115/JRC2019-1266
16.
Chen
,
Z.
,
Liang
,
X.
, and
Zheng
,
M.
,
2020
, “
Knowledge Transfer Between Different Uavs for Trajectory Tracking
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
4939
4946
.10.1109/LRA.2020.3004776
17.
Liang
,
X.
,
Zheng
,
M.
, and
Zhang
,
F.
,
2018
, “
A Scalable Model-Based Learning Algorithm With Application to UAVs
,”
IEEE Control Syst. Lett.
,
2
(
4
), pp.
839
844
.10.1109/LCSYS.2018.2849576
18.
Zheng
,
M.
,
Chen
,
Z.
, and
Liang
,
X.
,
2019
, “
A Preliminary Study on a Physical Model Oriented Learning Algorithm With Application to UAVs
,”
ASME
Paper No. DSCC2019-9186. 10.1115/DSCC2019-9186
19.
Pipatpaibul
,
P.-I.
, and
Ouyang
,
P.
,
2013
, “
Application of Online Iterative Learning Tracking Control for Quadrotor UAVs
,”
ISRN Rob.
,
2013
, pp.
1
20
.10.5402/2013/476153
20.
Barton
,
K.
, and
Kingston
,
D.
,
2013
, “
Systematic Surveillance for UAVs: A Feedforward Iterative Learning Control Approach
,”
American Control Conference
, Washington, DC, June 17–19, pp.
5917
5922
.10.1109/ACC.2013.6580766
21.
Sferrazza
,
C.
,
Muehlebach
,
M.
, and
D'Andrea
,
R.
,
2017
, “
Trajectory Tracking and Iterative Learning on an Unmanned Aerial Vehicle Using Parametrized Model Predictive Control
,” IEEE 56th Annual Conference on Decision and Control (
CDC
), Melbourne, Australia, Dec. 12–15, pp.
5186
5192
.10.1109/CDC.2017.8264428
22.
Pereida
,
K.
,
Kooijman
,
D.
,
Duivenvoorden
,
R. R.
, and
Schoellig
,
A. P.
,
2019
, “
Transfer Learning for High-Precision Trajectory Tracking Through Adaptive Feedback and Iterative Learning
,”
Int. J. Adapt. Control Signal Process.
,
33
(
2
), pp.
388
409
.10.1002/acs.2887
23.
Purvin
,
O.
, and
Andrea
,
R.
,
2009
, “
Performing Aggressive Maneuvers Using Iterative Learning Control
,”
IEEE Conference on Robotics and Automation
, Kobe, Japan, May 12–17, pp.
1731
1736
. 10.1109/ROBOT.2009.5152599
24.
Zhaowei
,
M.
,
Tianjiang
,
H.
,
Lincheng
,
S.
,
Weiwei
,
K.
,
Boxin
,
Z.
, and
Kaidi
,
Y.
,
2015
, “
An Iterative Learning Controller for Quadrotor Uav Path Following at a Constant Altitude
,” 34th Chinese Control Conference (
CCC
), Hangzhou, China, July 28–30, pp.
4406
4411
. 10.1109/ChiCC.2015.7260322
25.
Owens
,
D. H.
,
Chu
,
B.
, and
Songjun
,
M.
,
2012
, “
Parameter-Optimal Iterative Learning Control Using Polynomial Representations of the Inverse Plant
,”
Int. J. Control
,
85
(
5
), pp.
533
544
.10.1080/00207179.2012.658867
26.
Ghosh
,
J.
, and
Paden
,
B.
,
2002
, “
A Pseudoinverse-Based Iterative Learning Control
,”
IEEE Trans. Autom. Control
,
47
(
5
), pp.
831
837
.10.1109/TAC.2002.1000282
27.
Adlakha
,
R.
, and
Zheng
,
M.
,
2020
, “
An Optimization-Based Iterative Learning Control Design Method for Uav's Trajectory Tracking
,” American Control Conference (
ACC
), Denver, CO, July 1–3, pp.
1353
1359
.10.23919/ACC45564.2020.9147752
28.
Michael
,
N.
,
Mellinger
,
D.
,
Lindsey
,
Q.
, and
Kumar
,
V.
,
2010
, “
The Grasp Multiple Micro-UAV Testbed
,”
IEEE Rob. Autom. Mag.
,
17
(
3
), pp.
56
65
.10.1109/MRA.2010.937855
29.
Islam
,
S. A. U.
, and
Bernstein
,
D. S.
,
2019
, “
Recursive Least Squares for Real-Time Implementation
,”
IEEE Control Syst. Mag.
,
39
(
3
), pp.
82
85
. [lecture notes],”10.1109/MCS.2019.2900788
30.
Bruce
,
A. L.
,
Goel
,
A.
, and
Bernstein
,
D. S.
,
2020
, “
Convergence and Consistency of Recursive Least Squares With Variable-Rate Forgetting
,”
Automatica
,
119
, p.
109052
.10.1016/j.automatica.2020.109052
31.
Zheng
,
M.
,
Zhang
,
F.
, and
Liang
,
X.
,
2018
, “
A Systematic Design Framework for Iterative Learning Control With Current Feedback
,”
IFAC J. Syst. Control
,
5
, pp.
1
10
.10.1016/j.ifacsc.2018.06.001
32.
Zheng
,
M.
,
Wang
,
C.
,
Sun
,
L.
, and
Tomizuka
,
M.
,
2017
, “
Design of Arbitrary-Order Robust Iterative Learning Control Based on Robust Control Theory
,”
Mechatronics
,
47
, pp.
67
76
.10.1016/j.mechatronics.2017.08.009
33.
Gahinet
,
P.
, and
Apkarian
,
P.
,
1994
, “
A Linear Matrix Inequality Approach to H-Infinity Control
,”
Int. J. Robust Nonlinear Control
,
4
(
4
), pp.
421
448
.10.1002/rnc.4590040403
34.
Dullerud
,
G. E.
, and
Paganini
,
F.
,
2000
, “
A Course in Robust Control Theory: A Convex Approach
,”
Texts in Applied Mathematics)
,
Springer
,
New York
.
35.
Carl Dean
,
M.
,
2000
,
Matrix Analysis and Applied Linear Algebra
, Vol.
71
,
Siam
, Philadelphia, PA.
36.
Drone
,
P. A.
, “Parrot AR Drone,” accessed Jan. 19, 2021, https://www. parrot.com/us/drones/parrot-ardrone-20-elite-edition
You do not currently have access to this content.