Abstract

A complex motion encountered in a number of robotic, industrial, and defense applications is the motion of a rigid body when one of its body-fixed axes tracks a desired pointing direction while it rotates at high angular velocity around the pointing direction (PDAV); during this motion, high frequency precession/nutation oscillations arise. This work analyzes the global/local closed-loop (CL) behavior induced by a developed geometric, PDAV controller and studies the high frequency precession/nutation oscillations that characterize PDAV motions. This is done via geometrically exact linearization and via simulation techniques that amount to charting the smooth CL vector fields on the manifold. A method to quickly estimate the frequency of the precession/nutation oscillations is developed and can be used for sizing actuators. A thorough understanding of the behavior of the CL flow induced by the PDAV controller is achieved, allowing the control engineer to anticipate/have a rough estimate of the system CL response.

References

1.
Osborne
,
J.
,
Hicks
,
G.
, and
Fuentes
,
R.
,
2008
, “
Global Analysis of the Double-Gimbal Mechanism
,”
IEEE Control Syst. Mag.
,
28
(
4
), pp.
44
64
.10.1109/MCS.2008.924794
2.
Repoulias
,
F.
, and
Papadopoulos
,
E.
,
2007
, “
Planar Trajectory Planning and Tracking Control Design for Underactuated Auvs
,”
Ocean Eng.
,
34
(
11–12
), pp.
1650
1667
.10.1016/j.oceaneng.2006.11.007
3.
Ramp
,
M.
, and
Papadopoulos
,
E.
,
2015
, “
On Modeling and Control of a Holonomic Vectoring Tricopter
,”
International Conference on Intelligent Robots and Systems
(
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
662
668
.10.1109/IROS.2015.7353443
4.
Chi
,
B.
,
Hu
,
Q.
, and
Guo
,
L.
,
2018
, “
Reduced Attitude Control in the Presence of Pointing Constraint
,” 37th Chinese Control Conference (
CCC
), Wuhan, China, July 25–27, pp.
9781
9785
.10.23919/ChiCC.2018.8482587
5.
Invernizzi
,
D.
, and
Lovera
,
M.
,
2019
, “
Attitude Stabilization of Inertial Pointing Spacecraft Using Magnetic Actuators
,”
IFAC-PapersOnLine
,
52
(
12
), pp.
442
447
.10.1016/j.ifacol.2019.11.283
6.
Dhullipalla
,
M. H.
,
Hamrah
,
R.
,
Warier
,
R. R.
, and
Sanyal
,
A. K.
,
2019
, “
Trajectory Generation on se(3) for an Underactuated Vehicle With Pointing Direction Constraints
,” American Control Conference (
ACC
), Philadelphia, PA, July 10–12, pp.
1930
1935
.10.23919/ACC.2019.8815238
7.
Chaturvedi
,
N. A.
,
Sanyal
,
A. K.
, and
McClamroch
,
N. H.
,
2011
, “
Rigid-Body Attitude Control
,”
IEEE Control Syst. Mag.
,
31
(
3
), pp.
30
51
.10.1109/MCS.2011.940459
8.
Chaturvedi
,
N. A.
,
McClamroch
,
N. H.
, and
Bernstein
,
D. S.
,
2009
, “
Asymptotic Smooth Stabilization of the Inverted 3-d Pendulum
,”
IEEE Trans. Autom. Control
,
54
(
6
), pp.
1204
1215
.10.1109/TAC.2009.2019792
9.
Chaturvedi
,
N.
,
McClamroch
,
N.
, and
Bernstein
,
D.
,
2008
, “
Stabilization of a 3d Axially Symmetric Pendulum
,”
Automatica
,
44
(
9
), pp.
2258
2265
.10.1016/j.automatica.2008.01.013
10.
Mayhew
,
C. G.
, and
Teel
,
A. R.
,
2010
, “
Global Asymptotic Stabilization of the Inverted Equilibrium Manifold of the 3-d Pendulum by Hybrid Feedback
,” 49th Conf. Decis. Control (
CDC
), Atlanta, GA, Dec. 15–17, pp.
679
684
.10.1109/CDC.2010.5717852
11.
Mayhew
,
C. G.
, and
Teel
,
A. R.
,
2013
, “
Global Stabilization of Spherical Orientation by Synergistic Hybrid Feedback With Application to Reduced-Attitude Tracking for Rigid Bodies
,”
Automatica
,
49
(
7
), pp.
1945
1957
.10.1016/j.automatica.2013.02.049
12.
Ramp
,
M.
, and
Papadopoulos
,
E.
,
2015
, “
Attitude and Angular Velocity Tracking for a Rigid Body Using Geometric Methods on the Two-Sphere
,”
European Control Conference
(
ECC
), Linz, Austria, July 15–17, pp.
3238
3243
.10.1109/ECC.2015.7331033
13.
Bhat
,
S.
, and
Bernstein
,
D. S.
,
2000
, “
A Topological Obstruction to Continuous Global Stabilization of Rotational Motion and the Unwinding Phenomenon
,”
Syst. Control Lett.
,
39
(
1
), pp.
63
70
.10.1016/S0167-6911(99)00090-0
14.
Bernuau
,
E.
,
Perruquetti
,
W.
, and
Moulay
,
E.
,
2013
, “
Retraction Obstruction to Time-Varying Stabilization
,”
Automatica
,
49
(
6
), pp.
1941
1943
.10.1016/j.automatica.2013.03.012
15.
Mayhew
,
C. G.
,
Sanfelice
,
R. G.
, and
Teel
,
A. R.
,
2011
, “
Quaternion-Based Hybrid Control for Robust Global Attitude Tracking
,”
IEEE Trans. Autom. Control
,
56
(
11
), pp.
2555
2566
.10.1109/TAC.2011.2108490
16.
Lee
,
T.
,
2015
, “
Global Exponential Attitude Tracking Controls on so ( 3 )
,”
IEEE Trans. Autom. Control
,
60
(
10
), pp.
2837
2842
.10.1109/TAC.2015.2407452
17.
Lee
,
T.
,
Chang
,
D. E.
, and
Eun
,
Y.
,
2019
, “
Semiglobal Nonmemoryless Attitude Controls on the Special Orthogonal Group
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
2
), p.
021005
.10.1115/1.4041447
18.
Koditschek
,
D. E.
,
1988
, “
Application of a New Lyapunov Function to Global Adaptive Attitude Tracking
,”
Proceedings of the 27th Conference on Decision and Control
(
CDC
), Vol.
1
, Austin, TX, Dec. 7–9, pp.
63
68
.10.1109/CDC.1988.194270
19.
Lee
,
T.
,
Leok
,
M.
, and
McClamroch
,
N. H.
,
2010
, “
Geometric Tracking Control of a Quadrotor UAV on SE(3)
,”
49th Conference on Decision and Control
(
CDC
), Atlanta, GA, Dec. 15–17, pp.
5420
5425
.10.1109/CDC.2010.5717652
20.
Warier
,
R. R.
,
Sanyal
,
A. K.
,
Dhullipalla
,
M. H.
, and
Viswanathan
,
S. P.
,
2018
, “
Finite-Time Stable Trajectory Tracking and Pointing Control for a Class of Underactuated Vehicles in SE(3)
,” Indian Control Conference (
ICC
), Kanpur, India, Jan. 4–6, pp.
190
195
.10.1109/INDIANCC.2018.8307976
21.
Sanyal
,
A.
,
Nordkvist
,
N.
, and
Chyba
,
M.
,
2011
, “
An Almost Global Tracking Control Scheme for Maneuverable Autonomous Vehicles and Its Discretization
,”
IEEE Trans. Autom. Control
,
56
(
2
), pp.
457
462
.10.1109/TAC.2010.2090190
22.
Goodarzi
,
F. A.
, and
Lee
,
T.
,
2016
, “
Stabilization of a Rigid Body Payload With Multiple Cooperative Quadrotors
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
12
), p.
121001
.10.1115/1.4033945
23.
Ramp
,
M.
, and
Papadopoulos
,
E.
,
2018
, “
Global Closed-Loop Equilibrium Properties of a Geometric PDAV Controller Via a Coordinate-Free Linearization
,”
European Control Conference
(
ECC
), Limassol, Cyprus, June 12–15, pp.
1250
1256
.10.23919/ECC.2018.8550584
24.
Lee
,
T.
,
Leok
,
M.
, and
McClamroch
,
N. H.
,
2011
, “
Stable Manifolds of Saddle Equilibria for Pendulum Dynamics on S2 and SO(3)
,”
50th Conference on Decision and Control (CDC) and European Control Conference
(
EUCA
), Orlando, FL, Dec. 12–15, pp.
3915
3921
. http://folk.ntnu.no/skoge/prost/proceedings/cdc-ecc-2011/data/papers/0636.pdf
25.
Goldstein
,
H.
,
Poole
,
C.
, and
Safko
,
J.
,
2013
,
Classical Mechanics
,
Pearson
,
London
.
26.
Lewis
,
A. D.
, and
R. T
,
D.
,
2010
, “
Geometric Jacobian Linearization and LQR Theory
,”
J. Geomet. Mech.
,
2
(
4
), pp.
397
440
.10.3934/jgm.2010.2.397
27.
Wu
,
G.
, and
Sreenath
,
K.
,
2015
, “
Variation-Based Linearization of Nonlinear Systems Evolving on SO(3) and S 2
,”
IEEE Access
,
3
, pp.
1592
1604
.10.1109/ACCESS.2015.2477880
28.
Cooke
,
R.
, and
Arnold
,
V.
,
1992
,
Ordinary Differential Equations
,
Springer Textbook. Springer
,
Berlin/Heidelberg
.
29.
Ilchmann
,
A.
, and
Mueller
,
M.
,
2007
, “
Time-Varying Linear Systems: Relative Degree and Normal Form
,”
IEEE Trans. Autom. Control
,
52
(
5
), pp.
840
851
.10.1109/TAC.2007.895843
30.
Brunovskà
,
P.
,
1970
, “
A Classification of Linear Controllable Systems
,”
Kybernetika
,
6
(
3
), pp.
173
188
.http://www.kybernetika.cz/content/1970/3/173/paper.pdf
31.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
2002
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(Applied Mathematical Sciences),
Springer
,
New York
.
32.
Lee
,
T.
,
Leok
,
M.
, and
McClamroch
,
N. H.
,
2007
, “
Lie Group Variational Integrators for the Full Body Problem in Orbital Mechanics
,”
Celestial Mech. Dyn. Astron.
,
98
(
2
), pp.
121
144
.10.1007/s10569-007-9073-x
33.
Krauskopf
,
B.
,
Osinga
,
H. M.
,
Doedel
,
E. J.
,
Henderson
,
M. E.
,
Guckenheimer
,
J.
,
Vladimirsky
,
A.
,
Dellnitz
,
M.
, and
Junge
,
O.
,
2005
, “
A Survey of Methods for Computing (Un)Stable Manifolds of Vector Fields
,”
Int. J. Bifurcation Chaos
,
15
(
03
), pp.
763
791
.10.1142/S0218127405012533
34.
Penrose
,
R.
,
2004
,
Road to Reality
, 1st ed.,
Jonathan Cape (Rand)
,
London
.
You do not currently have access to this content.