Abstract

This study uses a low-density solid-state flash lidar for estimating the trajectories of road vehicles in vehicle collision avoidance applications. Low-density flash lidars are inexpensive compared to the commonly used radars and point-cloud lidars, and have attracted the attention of vehicle manufacturers recently. However, tracking road vehicles using the sparse data provided by such sensors is challenging due to the few reflected measurement points obtained. In this paper, such challenges in the use of low-density flash lidars are identified and estimation algorithms to handle the same are presented. A method to use the amplitude information provided by the sensor for better localization of targets is evaluated using both physics-based simulations and experiments. A two-step hierarchical clustering algorithm is then employed to group multiple detections from a single object into one measurement, which is then associated with the corresponding object using a Joint Integrated Probabilistic Data Association (JIPDA) algorithm. A Kalman filter is used to estimate the longitudinal and lateral motion variables and the results are presented, which show that good tracking, especially in the lateral direction, can be achieved using the proposed algorithm despite the sparse measurements provided by the sensor.

References

1.
World Health Organization
,
2018
, Global Status Report on Road Safety 2018, World Health Organization, Geneva, Switzerland.
2.
Ministry of Road Transport & Highways
,
2017
, “Road Accidents In India,” Ministry of Road Transport & Highways.
3.
Kusano
,
K. D.
, and
Gabler
,
H. C.
,
2012
, “
Safety Benefits of Forward Collision Warning, Brake Assist, and Autonomous Braking Systems in Rear-End Collisions
,”
IEEE Trans. Intell. Transp. Syst.
,
13
(
4
), pp.
1546
1555
.10.1109/TITS.2012.2191542
4.
Ji
,
X.
,
Yang
,
K.
,
Na
,
X.
,
Lv
,
C.
,
Liu
,
Y.
, and
Liu
,
Y.
,
2019
, “
Feedback Game-Based Shared Control Scheme Design for Emergency Collision Avoidance: A Fuzzy-Linear Quadratic Regulator Approach
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
8
), p.
081005
.10.1115/1.4042880
5.
Soudbakhsh
,
D.
,
Eskandarian
,
A.
, and
Chichka
,
D.
,
2013
, “
Vehicle Collision Avoidance Maneuvers With Limited Lateral Acceleration Using Optimal Trajectory Control
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
4
), p.
041006
.10.1115/1.4023943
6.
Mukhtar
,
A.
,
Xia
,
L.
, and
Tang
,
T. B.
,
2015
, “
Vehicle Detection Techniques for Collision Avoidance Systems: A Review
,”
IEEE Trans. Intell. Transp. Syst.
,
16
(
5
), pp.
2318
2338
.10.1109/TITS.2015.2409109
7.
Bar-Hillel
,
A.
,
Lerner
,
R.
,
Levi
,
D.
, and
Raz
,
G.
,
2014
, “
Recent Progress in Road and Lane Detection: A Survey
,”
Mach. Vision Appl.
,
25
(
3
), pp.
727
745
.10.1007/s00138-011-0404-2
8.
Cao
,
M.
, and
Wang
,
J.
,
2020
, “
Obstacle Detection for Autonomous Driving Vehicles With Multi-LiDAR Sensor Fusion
,”
ASME J. Dyn. Syst. Meas. Control
,
142
(
2
), p.
021007
.10.1115/1.4045361
9.
Gu
,
S.
,
Lu
,
T.
,
Zhang
,
Y.
,
Alvarez
,
J. M.
,
Yang
,
J.
, and
Kong
,
H.
,
2018
, “
3-d Lidar + Monocular Camera: An Inverse-Depth-Induced Fusion Framework for Urban Road Detection
,”
IEEE Trans. Intell. Veh.
,
3
(
3
), pp.
351
360
.10.1109/TIV.2018.2843170
10.
Person
,
M.
,
Jensen
,
M.
,
Smith
,
A. O.
, and
Gutierrez
,
H.
,
2019
, “
Multimodal Fusion Object Detection System for Autonomous Vehicles
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
7
), p.
071017
.10.1115/1.4043222
11.
Ackerman
,
E.
,
2016
, “Quanergy Announces [Dollar]250 Solid-State Lidar for Cars, Robots, and More,” accessed Mar. 8, 2021, https://spectrum.ieee.org/cars-that-think/transportation/sensors/quanergy-solid-state-lidar
12.
Ross
,
P. E.
,
2020
, “Velodyne Will Sell a Lidar for [Dollar]100,” accessed Mar. 8, 2021, https://spectrum.ieee.org/cars-that-think/sensors/automotive-sensors/velodyne-will-sell-a-lidar-for-100
14.
Marti
,
E.
,
de Miguel
,
M. A.
,
Garcia
,
F.
, and
Perez
,
J.
,
2019
, “
A Review of Sensor Technologies for Perception in Automated Driving
,”
IEEE Intell. Transp. Syst. Mag.
,
11
(
4
), pp.
94
108
.10.1109/MITS.2019.2907630
15.
Chen
,
C.-I.
, and
Stettner
,
R.
,
2011
, “
Drogue Tracking Using 3D Flash Lidar for Autonomous Aerial Refueling
,”
SPIE Proc.
, Vol.
8037
, pp.
216
226
.10.1117/12.886572
16.
Johnson
,
A. E.
,
Keim
,
J. A.
, and
Ivanov
,
T.
,
2010
, “
Analysis of Flash Lidar Field Test Data for Safe Lunar Landing
,”
IEEE Aerospace Conference
, Big Sky, MT, Mar. 6–13, pp.
1
11
. 10.1109/AERO.2010.5447025
17.
Natale
,
D. J.
,
Tutwiler
,
R. L.
,
Baran
,
M. S.
, and
Durkin
,
J. R.
,
2010
, “
Using Full Motion 3D Flash Lidar Video for Target Detection, Segmentation, and Tracking
,”
IEEE Southwest Symposium on Image Analysis Interpretation
(
SSIAI
), Austin, TX, May 23–25, pp.
21
24
.10.1109/SSIAI.2010.5483929
18.
Hammer
,
M.
,
Hebel
,
M.
, and
Arens
,
M.
,
2016
, “
Automated Object Detection and Tracking With a Flash LiDAR System
,”
SPIE Proc.,
9988
, p.
998803
.10.1117/12.2240640
19.
Wenzl
,
K.
,
Ruser
,
H.
, and
Kargel
,
C.
,
2013
, “
Performance Evaluation of a Decentralized Multitarget-Tracking Algorithm Using a Lidar Sensor Network With Stationary Beams
,”
IEEE Trans. Instrum. Meas.
,
62
(
5
), pp.
1174
1182
.10.1109/TIM.2012.2234591
20.
Xie
,
Z.
, and
Rajamani
,
R.
,
2019
, “
On-Bicycle Vehicle Tracking at Traffic Intersections Using Inexpensive Low-Density Lidar
,” American Control Conference (
ACC
), Philadelphia, PA, July 10–12, pp.
593
598
.10.23919/ACC.2019.8814442
21.
Panzani
,
G.
,
Nava
,
D.
, and
Savaresi
,
S. M.
,
2019
, “
An Odometry Free Automatic Perpendicular Parking Strategy for a Light Urban Vehicle Based on a Low Resolution Lidar
,”
IEEE Intelligent Transportation Systems Conference
(
ITSC
), Auckland, New Zealand, Oct. 27–30, pp.
2772
2777
.10.1109/ITSC.2019.8916916
22.
Arnay
,
R.
,
Hernandez-Aceituno
,
J.
,
Toledo
,
J.
, and
Acosta
,
L.
,
2018
, “
Laser and Optical Flow Fusion for a Non-Intrusive Obstacle Detection System on an Intelligent Wheelchair
,”
IEEE Sens. J.
,
18
(
9
), pp.
3799
3805
.10.1109/JSEN.2018.2815566
23.
G.
,
Kashani
,
A.
,
Olsen
,
M.
,
Parrish
,
C.
, and
Wilson
,
N.
,
2015
, “
A Review of Lidar Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration
,”
Sensors
,
15
(
11
), pp.
28099
28128
.10.3390/s151128099
24.
Manning
,
C. D.
,
Raghavan
,
P.
, and
Schtze
,
H.
,
2008
,
Introduction to Information Retrieval
,
Cambridge University Press
,
Cambridge, UK
.
25.
Challa
,
S.
,
Morelande
,
M. R.
,
Muicki
,
D.
, and
Evans
,
R. J.
,
2011
,
Fundamentals of Object Tracking
,
Cambridge University Press
,
Cambridge, UK
.
26.
Jeong
,
S.
, and
Tugnait
,
J. K.
,
2005
, “
Tracking of Multiple Maneuvering Targets in Clutter With Possibly Unresolved Measurements Using IMM and JPDAM Coupled Filtering
,”
Proceedings of the American Control Conference
, Portland, OR, June 8–10, pp.
1257
1262
.10.1109/ACC.2005.1470137
27.
Romeo
,
K.
,
Crouse
,
D. F.
,
Bar-Shalom
,
Y.
, and
Willett
,
P.
,
2010
, “
The JPDAF in Practical Systems: Approximations
,”
Signal Data Process. Small Targets
,
7698
, pp.
594
603
.10.1117/12.862932
28.
NASA
,
2018
, “Ecostress Spectral Library,” NASA, Pasadena, CA.
29.
USGS
,
2017
, “Spectral Library Version 7,” USGS, Reston, VA.
30.
Prakash
,
C. D.
,
Akhbari
,
F.
, and
Karam
,
L. J.
,
2019
, “
Robust Obstacle Detection for Advanced Driver Assistance Systems Using Distortions of Inverse Perspective Mapping of a Monocular Camera
,”
Rob. Auton. Syst.
,
114
, pp.
172
186
.10.1016/j.robot.2018.12.004
31.
Rezaei
,
M.
,
Terauchi
,
M.
, and
Klette
,
R.
,
2015
, “
Robust Vehicle Detection and Distance Estimation Under Challenging Lighting Conditions
,”
IEEE Trans. Intell. Transp. Syst.
,
16
(
5
), pp.
2723
2743
.10.1109/TITS.2015.2421482
32.
LeddarTech, Inc.
,
2019
, “Leddar Vu User Guide,”
LeddarTech
,
Quebec City, Canada
.
You do not currently have access to this content.