Abstract

Bio-inspired solutions have been deeply investigated in the last two decades as a source of propulsive improvement for autonomous underwater vehicles. Despite the efforts made to pursue the substantial potential payoffs of marine animals' locomotion, the performance of biological swimmers is still far to reach. The possibility to design a machine capable of propelling itself like a marine animal strongly depends on the understanding of the mechanics principles underlying biological swimming. Therefore, the adoption of advanced simulation and measurement techniques is fundamental to investigate the fluid–structure interaction phenomena of aquatic animals' locomotion. Among those, computational fluid dynamics represents an invaluable tool to assess the propulsive loads due to swimming. However, the numerical predictions must be validated before they can be applied to the design of a bio-inspired robot. To this end, this paper presents the experimental setup devised to validate the fluid dynamics analysis performed on an oscillating foil. The numerical predictions led to the design of a strain gages-based sensor, which exploits the deflection and twisting of the foil shaft to indirectly measure the propulsive loads and obtain a complete dynamic characterization of the oscillating foil. The results obtained from the experiments showed a good agreement between the numerical predictions and the measured loads; the test equipment also allowed to investigate the potential benefits of a slender fish-like body placed before the spinning fin. Therefore, in future work, the system will be employed to validate the analysis performed on more sophisticated modes of locomotion.

References

1.
Scaradozzi
,
D.
,
Palmieri
,
G.
,
Costa
,
D.
, and
Pinelli
,
A.
,
2017
, “
BCF Swimming Locomotion for Autonomous Underwater Robots: A Review and a Novel Solution to Improve Control and Efficiency
,”
Ocean Eng.
,
130
, pp.
437
453
.10.1016/j.oceaneng.2016.11.055
2.
Zapata-Ramírez
,
P. A.
,
Scaradozzi
,
D.
,
Sorbi
,
L.
,
Palma
,
M.
,
Pantaleo
,
U.
,
Ponti
,
M.
, and
Cerrano
,
C.
,
2013
, “
Innovative Study Methods for the Mediterranean Coralligenous Habitats
,”
Adv. Oceanography Limnol.
,
4
(
2
), pp.
102
119
.10.4081/aiol.2013.5339
3.
Sorbi
,
L.
,
Scaradozzi
,
D.
,
Zoppini
,
F.
,
Zingaretti
,
S.
, and
Gambogi
,
P.
,
2015
, “
Robotic Tools and Techniques for Improving Research in an Underwater Delicate Environment
,”
Mar. Technol. Soc. J.
,
49
(
5
), pp.
6
17
.10.4031/MTSJ.49.5.5
4.
Yang
,
H.
, and
Zhang
,
F.
,
2012
, “
Robust Control of Formation Dynamics for Autonomous Underwater Vehicles in Horizontal Plane
,”
ASME J. Dyn. Syst., Meas. Control
,
134
(
3
), p. 031009.10.1115/1.4005507
5.
Scaradozzi
,
D.
,
Palmieri
,
G.
,
Costa
,
D.
,
Zingaretti
,
S.
,
Panebianco
,
L.
,
Ciuccoli
,
N.
,
Pinelli
,
A.
, and
Callegari
,
M.
,
2017
, “
UNIVPM BRAVe: A Hybrid Propulsion Underwater Research Vehicle
,”
Int. J. Autom. Technol.
,
11
(
3
), pp.
404
414
.10.20965/ijat.2017.p0404
6.
Liu
,
B.
,
Yang
,
Y.
,
Qin
,
F.
, and
Zhang
,
S.
,
2015
, “
Performance Study on a Novel Variable Area Robotic Fin
,”
Mechatronics
,
32
, pp.
59
66
.10.1016/j.mechatronics.2015.10.004
7.
Wang
,
J.
, and
Tan
,
X.
,
2013
, “
A Dynamic Model for Tail-Actuated Robotic Fish With Drag Coefficient Adaptation
,”
Mechatronics
,
23
(
6
), pp.
659
668
.10.1016/j.mechatronics.2013.07.005
8.
Holt
,
M.
, and
MacPherson
,
A. K.
,
1978
, “
Numerical Methods in Fluid Dynamics
,”
ASME J. Dyn. Syst., Meas. Control
,
100
(
2
), pp.
161
162
.10.1115/1.3426361
9.
Hbiri
,
I.
,
Karkri
,
H.
,
Ghorbel
,
F.
, and
Choura
,
S.
,
2018
, “
Modeling and Parameter Identification of An In-Tank Swimming Robot Performing Floor Inspection
,”
ASME J. Dyn. Syst., Meas. Control
,
141
(
3
), p.
031002
.10.1115/1.4041506
10.
Costa
,
D.
,
Palmieri
,
G.
,
Scaradozzi
,
D.
, and
Callegari
,
M.
,
2019
, “
Multi-Body Analysis of a Bio-Inspired Underwater Robot
,”
Mech. Mach. Sci.
,
68
, pp.
240
248
.10.1007/978-3-030-03320-0_26
11.
Abbaszadeh
,
S.
,
Hoerner
,
S.
,
Maître
,
T.
, and
Leidhold
,
R.
,
2019
, “
Experimental Investigation of an Optimized Pitch Control for a Vertical-Axis Turbine
,”
IET Renewable Power Gener.
,
13
(
16
), pp.
3106
3112
.10.1049/iet-rpg.2019.0309
12.
Schouveiler
,
L.
,
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
,
2005
, “
Performance of Flapping Foil Propulsion
,”
J. Fluids Struct.
,
20
(
7
), pp.
949
959
.10.1016/j.jfluidstructs.2005.05.009
13.
Park
,
Y. J.
,
Jeong
,
U.
,
Lee
,
J.
,
Kwon
,
S. R.
,
Kim
,
H. Y.
, and
Cho
,
K. J.
,
2012
, “
Kinematic Condition for Maximizing the Thrust of a Robotic Fish Using a Compliant Caudal Fin
,”
IEEE Trans. Rob.
,
28
(
6
), pp.
1216
1227
.10.1109/TRO.2012.2205490
14.
Barrett
,
D. S.
,
Triantafyllou
,
M. S.
,
Yue
,
D. K. P.
,
Grosenbaugh
,
M. A.
, and
Wolfgang
,
M. J.
,
1999
, “
Drag Reduction in Fish-Like Locomotion
,”
J. Fluid Mech.
,
392
, pp.
183
212
.10.1017/S0022112099005455
15.
Prempraneerach
,
P.
,
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
,
2003
, “
The Effect of Chordwise Flexibility on the Thrust and Efficiency of a Flapping Foil
,”
13th International Symposium on Unmanned Untethered Submersible Technology
(
UUST
), New Hampshire, Vol.
152
, Aug., pp.
150
170
.http://web.mit.edu/towtank/www/papers/FlexibleFoil_Paper.pdf
16.
Low
,
K. H.
,
Chong
,
C. W.
, and
Zhou
,
C.
,
2010
, “
Performance Study of a Fish Robot Propelled by a Flexible Caudal Fin
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–8, pp.
90
95
.10.1109/ROBOT.2010.5509848
17.
Lauder
,
G. V.
,
Anderson
,
E. J.
,
Tangorra
,
J.
, and
Madden
,
P. A.
,
2007
, “
Fish Biorobotics: Kinematics and Hydrodynamics of Self-Propulsion
,”
J. Exp. Biol.
,
210
(
16
), pp.
2767
2780
.10.1242/jeb.000265
18.
Wen
,
L.
,
Wu
,
G.
,
Liang
,
J.
, and
Li
,
J.
,
2010
, “
Hydrodynamic Experimental Investigation on Efficient Swimming of Robotic Fish Using Self-Propelled Method
,”
Int. J. Offshore Polar Eng.
,
20
(
3
).https://onepetro.org/IJOPE/article-abstract/35648/Hydrodynamic-Experimental-Investigation-On?redirectedFrom=PDF
19.
Wang
,
S.
,
He
,
G.
, and
Zhang
,
X.
,
2016
, “
Self-Propulsion of Flapping Bodies in Viscous Fluids: Recent Advances and Perspectives
,”
Acta Mech. Sin.
,
32
(
6
), pp.
980
990
.10.1007/s10409-016-0578-y
20.
Sfakiotakis
,
M.
,
Lane
,
D. M.
, and
Davies
,
J. B. C.
,
1999
, “
Review of Fish Swimming Modes for Aquatic Locomotion
,”
IEEE J. Oceanic Eng.
,
24
(
2
), pp.
237
252
.10.1109/48.757275
21.
Chan
,
W. L.
,
Kang
,
T.
, and
Lee
,
Y. J.
,
2007
, “
Experiments and Identification of an Ostraciiform Fish Robot
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Sanya, China, Dec. 15–28, pp.
530
534
.10.1109/ROBIO.2007.4522218
22.
Kodati
,
P.
,
Hinkle
,
J.
,
Winn
,
A.
, and
Deng
,
X.
,
2008
, “
Microautonomous Robotic Ostraciiform (MARCO): Hydrodynamics, Design and Fabrication
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
105
117
.10.1109/TRO.2008.915446
23.
Bassi
,
F.
, and
Rebay
,
S.
,
2002
, “
Numerical Evaluation of Two Discontinuous Galerkin Methods for the Compressible Navier–Stokes Equations
,”
Int. J. Numer. Methods Fluids
,
40
(
1–2
), pp.
197
207
.10.1002/fld.338
24.
Bassi
,
F.
,
Crivellini
,
A.
,
Di Pietro
,
D. A.
, and
Rebay
,
S.
,
2007
, “
An Implicit High-Order Discontinuous Galerkin Method for Steady and Unsteady Incompressible Flows
,”
Comput. Fluids
,
36
(
10
), pp.
1529
1546
.10.1016/j.compfluid.2007.03.012
25.
Bassi
,
F.
,
Botti
,
L.
,
Colombo
,
A.
,
Crivellini
,
A.
,
Franchina
,
N.
, and
Ghidoni
,
A.
,
2016
, “
Assessment of a High-Order Accurate Discontinuous Galerkin Method for Turbomachinery Flows
,”
Int. J. Comput. Fluid Dyn.
,
30
(
4
), pp.
307
328
.10.1080/10618562.2016.1198783
26.
Eloy
,
C.
,
2012
, “
Optimal Strouhal Number for Swimming Animals
,”
J. Fluids Struct.
,
30
, pp.
205
208
.10.1016/j.jfluidstructs.2012.02.008
27.
Hoffmann
,
K.
,
2012
, “
An Introduction to Stress Analysis and Transducer Design Using Strain Gages
,” HBM, accessed Mar. 8, 2021, www.hbm.com
28.
Costa
,
D.
,
Palmieri
,
G.
,
Callegari
,
M.
,
Scaradozzi
,
D.
,
Zitti
,
G.
, and
Brocchini
,
M.
, “
Experimental Setup for the Validation of the Bio-Inspired Thruster of an Ostraciiform Swimming Robot
,” 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (
MESA
), Oulu, Finland, July 2–4, pp.
1
6
.10.1109/MESA.2018.8449165
29.
Costa
,
D.
,
Franciolini
,
M.
,
Palmieri
,
G.
,
Crivellini
,
A.
, and
Scaradozzi
,
D.
,
2017
, “
Computational Fluid Dynamics Analysis and Design of an Ostraciiform Underwater Robot
,”
Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Macau, Dec. 5–8, pp.
5
8
.https://www.researchgate.net/publication/324024183_Computational_fluid_dynamics_analysis_and_design_of_an_ostraciiform_swimming_robot
30.
Costa
,
D.
,
Palpacelli
,
G. M.
, and
Scaradozzi
,
D.
,
2020
, “
Design of a Thunniform Swimming Robot in a Multiphysics Environment
,”
International Conference on Robotics in Alpe-Adria Danube Region
,
Springer
,
Cham, Switzerland
, pp.
257
265
.
31.
Costa
,
D.
,
Palmieri
,
G.
,
Palpacelli
,
M.
,
Scaradozzi
,
D.
, and
Callegari
,
M.
,
2020
, “
Design of a Carangiform Swimming Robot Through a Multiphysics Simulation Environment
,”
Biomimetics
,
5
(
4
), p.
46
.10.3390/biomimetics5040046
You do not currently have access to this content.