Abstract

This article explores the optimization of plant characteristics and controller parameters for electrified mobility. Electrification of mobile transportation systems, such as automobiles and aircraft, presents the ability to improve key performance metrics such as efficiency and cost. However, the strong bidirectional coupling between electrical and thermal dynamics within new components creates integration challenges, increasing component degradation, and reducing performance. Diminishing these issues requires novel plant designs and control strategies. The electrified mobility literature provides prior studies on plant and controller optimization, known as control co-design (CCD). A void within these studies is the lack of model predictive control (MPC), recognized to manage multi-domain dynamics for electrified systems, within CCD frameworks. This article addresses this through three contributions. First, a thermo-electromechanical hybrid electric vehicle (HEV) powertrain model is developed that is suitable for both plant optimization and MPC. Second, simultaneous plant and controller optimization is performed for this multi-domain system. Third, MPC is integrated within a CCD framework using the candidate HEV powertrain model. Results indicate that optimizing both the plant and MPC parameters simultaneously can reduce physical component sizes by over 60% and key performance metric errors by over 50%.

References

1.
U.S. Energy Information Administration
,
2020
, “
Annual Energy Outlook 2020 with Projections to 2050
,” U.S. Energy Information Administration, Office of Energy Analysis, U.S. Department of Energy, Washington, DC.
2.
Offer
,
G. J.
,
2015
, “
Automated Vehicles and Electrification of Transport
,”
Energy Environ. Sci.
,
8
(
1
), pp.
26
30
.10.1039/C4EE02229G
3.
Khaligh
,
A.
, and
D'Antonio
,
M.
,
2019
, “
Global Trends in High-Power On-Board Chargers for Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
68
(
4
), pp.
3306
3324
.10.1109/TVT.2019.2897050
4.
Ahmad
,
A.
,
Alam
,
M. S.
, and
Chabaan
,
R.
,
2018
, “
A Comprehensive Review of Wireless Charging Technologies for Electric Vehicles
,”
IEEE Trans. Transp. Electrif.
,
4
(
1
), pp.
38
63
.10.1109/TTE.2017.2771619
5.
Wheeler
,
P.
, and
Bozhko
,
S.
,
2014
, “
The More Electric Aircraft: Technology and Challenges
,”
IEEE Electrif. Mag.
,
2
(
4
), pp.
6
12
.10.1109/MELE.2014.2360720
6.
Bennion
,
K.
,
2017
,
Electric Motor Thermal Management Research, Annual Report
, National Renewable Energy Lab (NREL), Golden, CO.
7.
Rahn
,
C. D.
, and
Wang
,
C.-Y.
,
2013
,
Battery Systems Engineering
,
Wiley
, Hoboken, NJ.
8.
Rugh
,
J. P.
,
Pesaran
,
A.
, and
Smith
,
K.
,
2011
, “
Electric Vehicle Battery Thermal Issues and Thermal Management Techniques
,”
SAE 2011 Alternative Refrigerant and System Efficiency Symposium, Scottsdale, AZ, Sept.
9.
Bailey
,
C.
,
2008
, “
Thermal Management Technologies for Electronic Packaging: Current Capabilities and Future Challenges for Modeling Tools
,”
10th Electronics Packaging Technology Conference
, Singapore, Dec. 9–12, pp.
527
532
.10.1109/EPTC.2008.4763487
10.
Allam
,
A.
,
Onori
,
S.
,
Marelli
,
S.
, and
Taborelli
,
C.
,
2015
, “
Battery Health Management System for Automotive Applications: A Retroactivity-Based Aging Propagation Study
,”
American Control Conference
, Chicago, IL, July 1–3, pp.
703
715
.10.1109/ACC.2015.7170817
11.
Kirschbaum
,
F.
,
Back
,
M.
, and
Hart
,
M.
,
2002
, “
Determination of the Fuel-Optimal Trajectory for a Vehicle Along a Known Route
,”
IFAC Proc.
,
35
(
1
), pp.
235
239
.10.3182/20020721-6-ES-1901.01507
12.
Moura
,
S. J.
,
Fathy
,
H. K.
,
Callaway
,
D. S.
, and
Stein
,
J. L.
,
2011
, “
A Stochastic Optimal Control Approach for Power Management in Plug-In Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
19
(
3
), pp.
545
555
.10.1109/TCST.2010.2043736
13.
Leroy
,
T.
,
Malaize
,
J.
, and
Corde
,
G.
,
2012
, “
Towards Real-Time Optimal Energy Management of HEV Powertrains Using Stochastic Dynamic Programming
,”
IEEE Vehicle Power and Propulsion Conference
,
Seoul, South Korea, Oct. 9-12, pp.
383
388
.10.1109/VPPC.2012.6422661
14.
Serrao
,
L.
,
Onori
,
S.
, and
Rizzoni
,
G.
,
2009
, “
ECMS as a Realization of Pontryagin's Minimum Principle for HEV Control
,”
American Control Conference
, St. Louis, MO, June 10–12, pp.
3964
3969
.10.1109/ACC.2009.5160628
15.
Paganelli
,
G.
,
Delprat
,
S.
,
Guerra
,
T. M.
,
Rimaux
,
J.
, and
Santin
,
J. J.
,
2002
, “
Equivalent Consumption Minimization Strategy for Parallel Hybrid Powertrains
,”
IEEE 55th Vehicular Technology Conference
, Birmingham, AL, May 6-9, pp.
2076
2081
.10.1109/VTC.2002.1002989
16.
Jalil
,
N.
,
Kheir
,
N. A.
, and
Salman
,
M.
,
1997
, “
A Rule-Based Energy Management Strategy for a Series Hybrid Vehicle
,”
American Control Conference
, Albuquerque, NM, June 4-6, pp.
689
693
.10.1109/ACC.1997.611889
17.
Banvait
,
H.
,
Anwar
,
S.
, and
Chen
,
Y.
,
2009
, “
A Rule-Based Energy Management Strategy for Plug- in Hybrid Electric Vehicle (PHEV)
,”
American Control Conference
, St. Louis, MO, June 10–12
, pp.
3938
3943
.10.1109/ACC.2009.5160242
18.
Chekan
,
J. A.
,
Bashash
,
S.
, and
Taheri
,
S.
,
2018
, “
A Data-Driven Control Strategy for Trip Length-Conscious Power Management of Plug-In Hybrid Electric Vehicles
,” IEEE Conference on Control Technology and Applications (
CCTA 2018
),
Copenhagen, Denmark, Aug. 21–24, pp.
794
799
.10.1109/CCTA.2018.8511466
19.
Xie
,
S.
,
Hu
,
X.
,
Qi
,
S.
, and
Lang
,
K.
,
2018
, “
An Artificial Neural Network-Enhanced Energy Management Strategy for Plug-In Hybrid Electric Vehicles
,”
Energy
,
163
, pp.
837
848
.10.1016/j.energy.2018.08.139
20.
Yue
,
M.
,
Jemei
,
S.
,
Gouriveau
,
R.
, and
Zerhouni
,
N.
,
2019
, “
Review on Health-Conscious Energy Management Strategies for Fuel Cell Hybrid Electric Vehicles: Degradation Models and Strategies
,”
Int. J. Hydrogen Energy
,
44
(
13
), pp.
6844
6861
.10.1016/j.ijhydene.2019.01.190
21.
Moura
,
S. J.
,
Stein
,
J. L.
, and
Fathy
,
H. K.
,
2013
, “
Battery-Health Conscious Power Management in Plug-in Hybrid Electric Vehicles Via Electrochemical Modeling and Stochastic Control
,”
IEEE Trans. Control Syst. Technol.
,
21
(
3
), pp.
679
694
.10.1109/TCST.2012.2189773
22.
Romijn
,
T. C. J.
, Donkers, M. C. F., Kessels, J. T., and Weiland, S.,
2018
, “
A Distributed Optimization Approach for Complete Vehicle Energy Management
,”
IEEE Trans. Control Syst. Technol.
, 27(3), pp.
964
980
.10.1109/TCST.2018.2789464
23.
Padovani
,
T. M.
,
Debert
,
M.
,
Colin
,
G.
, and
Chamaillard
,
Y.
,
2013
, “
Optimal Energy Management Strategy Including Battery Health through Thermal Management for Hybrid Vehicles
,”
IFAC Proc.
,
46
(
21
), pp.
384
389
.https://doi.org/10.3182/20130904-4-JP-2042.00137
24.
Doshi
,
N.
,
Hanover
,
D.
,
Hemmati
,
S.
,
Morgan
,
C.
, and
Shahbakhti
,
M.
,
2019
, “
Modeling of Thermal Dynamics of a Connected Hybrid Electric Vehicle for Integrated HVAC and Powertrain Optimal Operation
,”
ASME
Paper No. DSCC2019-9223.
10.1115/DSCC2019-9223
25.
Huang
,
Y.
,
Wang
,
H.
,
Khajepour
,
A.
,
He
,
H.
, and
Ji
,
J.
,
2017
, “
Model Predictive Control Power Management Strategies for HEVs: A Review
,”
J. Power Sources
,
341
, pp.
91
106
.10.1016/j.jpowsour.2016.11.106
26.
Vahidi
,
A.
,
Stefanopoulou
,
A.
, and
Peng
,
H.
,
2006
, “
Current Management in a Hybrid Fuel Cell Power System: A Model-Predictive Control Approach
,”
IEEE Trans. Control Syst. Technol.
,
14
(
6
), pp.
1047
1057
.10.1109/TCST.2006.880199
27.
Koeln
,
J. P.
,
Pangborn
,
H. C.
,
Williams
,
M. A.
,
Kawamura
,
M. L.
, and
Alleyne
,
A. G.
,
2019
, “
Hierarchical Control of Aircraft Electro-Thermal Systems
,”
Trans. Control Syst. Technol.
, pp.
1218
1232
.10.1109/TCST.2019.2905221
28.
Docimo
,
D. J.
,
Pangborn
,
H. C.
, and
Alleyne
,
A. G.
,
2018
, “
Hierarchical Control for Electro-Thermal Power Management of an Electric Vehicle Powertrain
,”
ASME
Paper No. DSCC2018-9215.10.1115/DSCC2018-9215
29.
Dunham
,
W.
,
Hencey
,
B.
,
Girard
,
A. R.
, and
Kolmanovsky
,
I.
,
2019
, “
Distributed Model Predictive Control for More Electric Aircraft Subsystems Operating at Multiple Time Scales
,”
IEEE Trans. Control Syst. Technol.
,
28
, pp.
2177
2190
.10.1109/TCST.2019.2932654
30.
Amini
,
M. R.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
,
2020
, “
Hierarchical MPC for Robust Eco-Cooling of Connected and Automated Vehicles and Its Application to Electric Vehicle Battery Thermal Management
,”
IEEE Trans. Control Syst. Technol.
,
29
(
1
), pp.
316
328
.10.1109/TCST.2020.2975464
31.
Park
,
S.
,
2011
,
A Comprehensive Thermal Management System Model for Hybrid Electric Vehicles
,
University of Michigan
, Ann Arbor, MI.
32.
Patil
,
R.
,
Adornato
,
B.
, and
Filipi
,
Z.
,
2010
, “
Design Optimization of a Series Plug-in Hybrid Electric Vehicle for Real-World Driving Conditions
,”
SAE Int. J. Eng.
,
3
(
1
), pp.
655
665
.10.4271/2010-01-0840
33.
Assanis
,
D.
,
Delagrammatikas
,
G.
,
Fellini
,
R.
,
Filipi
,
Z.
,
Liedtke
,
J.
,
Michelena
,
N.
,
Papalambros
,
P.
,
Reyes
,
D.
,
Rosenbaum
,
D.
,
Sales
,
A.
, and
Sasena
,
M.
,
1999
, “
Optimization Approach to Hybrid Electric Propulsion System Design
,”
Mech. Struct. Mach.
,
27
(
4
), pp.
393
421
.10.1080/08905459908915705
34.
Bayrak
,
A. E.
,
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
2016
, “
Topology Generation for Hybrid Electric Vehicle Architecture Design
,”
ASME J. Mech. Des.
,
138
(
8
), p.
081401
.10.1115/1.4033656
35.
Silvas
,
E.
,
Hofman
,
T.
,
Serebrenik
,
A.
, and
Steinbuch
,
M.
,
2015
, “
Functional and Cost-Based Automatic Generator for Hybrid Vehicles Topologies
,”
IEEE/ASME Trans. Mechatronics
,
20
(
4
), pp.
1561
1572
.10.1109/TMECH.2015.2405473
36.
Nagel
,
B.
,
Böhnke
,
D.
,
Gollnick
,
V.
,
Schmollgruber
,
P.
,
Rizzi
,
A.
,
La Rocca
,
G.
, and
Alonso
,
J. J.
,
2012
, “
Communication in Aircraft Design: Can We Establish a Common Language?
,”
28th International Congress of the Aeronautical Sciences
, Brisbane, Australia, Sept. 23–28, pp.
1
13
.
37.
McCullers
,
L. A.
,
1984
, “
Aircraft Configuration Optimization Including Optimized Flight Profiles
,” NASA Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 1, pp.
395
412
.
38.
Tappeta
,
R. V.
,
Nagendra
,
S.
, and
Renaud
,
J. E.
,
1999
, “
A Multidisciplinary Design Optimization Approach for High Temperature Aircraft Engine Components
,”
Struct. Optim.
,
18
(
2–3
), pp.
134
145
.10.1007/BF01195988
39.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2014
, “
Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA J.
,
52
(
4
), pp.
691
710
.10.2514/1.J052182
40.
Silvas
,
E.
,
Hofman
,
T.
,
Murgovski
,
N.
,
Etman
,
L. F. P.
, and
Steinbuch
,
M.
,
2017
, “
Review of Optimization Strategies for System-Level Design in Hybrid Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
66
(
1
), pp.
57
70
.10.1109/TVT.2016.2547897
41.
Fathy
,
H. K.
,
Reyer
,
J. A.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2001
, “
On the Coupling Between the Plant and Controller Optimization Problems
,”
Proc. Am. Control Conf.
,
3
, pp.
1864
1869
.10.1109/ACC.2001.946008
42.
Wipke
,
K.
,
Markel
,
T.
, and
Nelson
,
D.
,
2001
, “
Optimizing Energy Management Strategy and Degree of Hybridization for a Hydrogen Fuel Cell SUV
,”
Proceedings of 18th Electric Vehicle Symposium
, Berlin, Germany.
43.
Murgovski
,
N.
,
Johannesson
,
L.
,
Sjöberg
,
J.
, and
Egardt
,
B.
,
2012
, “
Component Sizing of a Plug-in Hybrid Electric Powertrain Via Convex Optimization
,”
Mechatronics
,
22
(
1
), pp.
106
120
.10.1016/j.mechatronics.2011.12.001
44.
Bayrak
,
A. E.
,
Kang
,
N.
, and
Papalambros
,
P. Y.
,
2016
, “
Decomposition-Based Design Optimization of Hybrid Electric Powertrain Architectures: Simultaneous Configuration and Sizing Design
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071405
.10.1115/1.4033655
45.
Kim
,
M. J.
, and
Peng
,
H.
,
2006
, “
Combined Control/Plant Optimization of Fuel Cell Hybrid Vehicles
,”
Proc. Am. Control Conf.
,
2006
, pp.
496
501
.
46.
Sanchez-Sanchez
,
K. B.
, and
Ricardez-Sandoval
,
L. A.
,
2013
, “
Simultaneous Design and Control Under Uncertainty Using Model Predictive Control
,”
Ind. Eng. Chem. Res.
,
52
(
13
), pp.
4815
4833
.10.1021/ie302215c
47.
Brengel
,
D. D.
, and
Seider
,
W. D.
,
1992
, “
Coordinated Design and Control Optimization of Nonlinear Processes
,”
Comput. Chem. Eng.
,
16
(
9
), pp.
861
886
.10.1016/0098-1354(92)80038-B
48.
Rafieishishavan
,
S.
,
2020
,
Integration of Design and Control for Large-Scale Applications: A Back-Off Approach
,
University of Waterloo
, Waterloo, ON, Canada.
49.
Koeln
,
J. P.
,
Williams
,
M. A.
,
Pangborn
,
H. C.
, and
Alleyne
,
A. G.
,
2016
, “
Experimental Validation of Graph-Based Modeling for Thermal Fluid Power Flow Systems
,”
ASME
Paper No. DSCC2016-9782
.10.1115/DSCC2016-9782
50.
Williams
,
M. A.
,
Koeln
,
J. P.
,
Pangborn
,
H. C.
, and
Allenye
,
A. G.
,
2017
, “
Dynamical Graph Models of Aircraft Electrical, Thermal, and Turbomachinery Components
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
4
), p.
041013
.10.1115/1.4038341
51.
Docimo
,
D. J.
, and
Alleyne
,
A. G.
,
2018
, “
Electro-Thermal Graph-Based Modeling for Hierarchical Control With Application to an Electric Vehicle
,”
IEEE Conference on Control Technology and Applications
, Copenhagen, Denmark.
52.
Pangborn
,
H. C.
, and
Alleyne
,
A. G.
,
2019
, “
Cooperativity and Hierarchical MPC of State-Constrained Switched Power Flow Systems
,”
Proceedings of the American Control Conference, American Automatic Control Council
, Philadelphia, PA, July 10–12, pp.
4245
4252
.
53.
Docimo
,
D. J.
,
Kang
,
Z.
,
James
,
K. A.
, and
Alleyne
,
A. G.
,
2020
, “
A Novel Framework for Simultaneous Topology and Sizing Optimization of Complex, Multi-Domain Systems-of-Systems
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091701
.10.1115/1.4046066
54.
Messac
,
A.
,
2015
,
Optimization in Practice With MATLAB for Engineering Students and Professionals
,
Cambridge University Press
, New York.
55.
Laird
,
C.
,
Docimo
,
D. J.
,
Aksland
,
C. T.
, and
Alleyne
,
A. G.
,
2020
, “
Graph-Based Design and Control Optimization of a Hybrid Electrical Energy Storage System
,”
ASME
Paper No. DSCC2020-3233.10.1115/DSCC2020-3233
56.
Pangborn
,
H. C.
,
Koeln
,
J. P.
,
Williams
,
M. A.
, and
Alleyne
,
A. G.
,
2018
, “
Experimental Validation of Graph-Based Hierarchical Control for Thermal Management
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
10
), p.
101016
.10.1115/1.4040211
57.
Aksland
,
C.
,
2019
,
Modular Modeling and Control of a Hybrid Unmanned Aerial
,
University of Illinois at Urbana-Champaign
, Urbana, IL.
You do not currently have access to this content.