Abstract

Automated fabrication of concrete elements requires precise control of outgoing volume flow. Since measurements of the volume flow or the total extruded volume are challenging during production, a feedforward control is required, which in turn necessitates a model of the dynamics at hand. In this paper, a concrete conveyance system with two pumps is considered. These are mounted at the inlet and outlet of the hose, respectively. Based on previous work, a dynamical model with concentrated parameters is derived, which is motivated on the general distributed dynamics of two-phase flow. The model is validated by experiments, with parameters calculated by a tailored estimation approach. Based thereon, a feedforward control approach is presented and tested in simulation, exploiting the approximate flatness of the system. The flat parametrization is then used for constrained, smooth setpoint transition of the volume flow with minimal transition time.

References

1.
UN
,
2019
, “
Global Status Report for Buildings and Construction
,” Report No. DTI/2265/PA.
2.
Wörner
,
M.
,
Schmeer
,
D.
,
Schuler
,
B.
,
Pfinder
,
J.
,
Garrecht
,
H.
,
Sawodny
,
O.
, and
Sobek
,
W.
,
2016
, “
Gradientenbetontechnologie
,”
Beton. Stahlbetonbau
,
111
(
12
), pp.
794
805
.10.1002/best.201600056
3.
Schmeer
,
D.
, and
Sobek
,
W.
,
2021
, “
Weight-Optimized and Mono-Material Concrete Components by the Integration of Mineralized Hollow Spheres
,”
Proceedings of IASS Annual Symposium
, Hamburg, Germany, Sept. 25–27.https://www.ingentaconnect.com/contentone/iass/piass/2017/00002017/00000002/art00007?crawler=true&mimetype=application/pdf
4.
Schmeer
,
D.
, and
Sobek
,
W.
,
2019
, “
Gradientenbeton
,” Betonkalender, Ernst & Sohn, pp.
455
476
.
5.
Blagojevic
,
B.
,
Schönemann
,
B.
,
Nigl
,
D.
,
Blandini
,
L.
, and
Sawodny
,
O.
,
2021
, “
Trajectory Planning for Concrete Element Fabrication With Optimal Control
,”
47th Annual Conference of the IEEE Industrial Electronics Society, IECON
, Toronto, ON, Canada, Oct. 13–16, pp.
1
6
.10.1109/IECON48115.2021.9589695
6.
Schmeer
,
D.
,
2021
, “
Mesogradierung Von Betonbauteilen
,” Quantitative Research, dissertation,
University Stuttgart
, Stuttgart, Germany.
7.
Kwon
,
S.
,
Jang
,
K.
,
Kim
,
J. H.
, and
Shah
,
S.
,
2016
, “
State of the Art on Prediction of Concrete Pumping
,”
Int. J. Concrete Struct. Mater.
,
10
(
S3
), pp.
75
85
.10.1007/s40069-016-0150-y
8.
Choi
,
M.
,
Kim
,
Y.
, and
Kim
,
J. K.
,
2014
, “
Prediction of Concrete Pumping Using Various Rheological Models
,”
Int. J. Concrete Struct. Mater.
,
8
(
4
), pp.
269
278
.10.1007/s40069-014-0084-1
9.
Le
,
H.
,
Kadri
,
E. H.
,
Aggoun
,
S.
,
Vierendeels
,
J.
,
Troch
,
P.
, and
De Schutter
,
G.
,
2015
, “
Effect of Lubrication Layer on Velocity Profile of Concrete in a Pumping Pipe
,”
Mater. Struct.
,
48
(
12
), pp.
3991
4003
.10.1617/s11527-014-0458-5
10.
Secrieru
,
E.
,
Butler
,
M.
, and
Mechtcherine
,
V.
,
2014
, “
Prüfen Der Pumpbarkeit Von Beton – Vom Labor in Die Praxis
,”
Bautechnik
,
91
(
11
), pp.
797
811
.10.1002/bate.201400072
11.
Rehman
,
A.
, and
Kim
,
J. H.
,
2021
, “
3d Concrete Printing: A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
,”
Materials
,
14
(
14
), pp.
3800
3807
.10.3390/ma14143800
12.
Nguyen-Van
,
V.
,
Panda
,
B.
,
Zhang
,
G.
,
Nguyen-Xuan
,
H.
, and
Tran
,
P.
,
2021
, “
Digital Design Computing and Modelling for 3-D Concrete Printing
,”
Autom. Construction
,
123
, p.
103529
.10.1016/j.autcon.2020.103529
13.
Mechtcherine
,
V.
,
Nerella
,
V. N.
,
Will
,
F.
,
Näther
,
M.
,
Otto
,
J.
, and
Krause
,
M.
,
2019
, “
Large-Scale Digital Concrete Construction – conprint3d Concept for on-Site, Monolithic 3d-Printing
,”
Autom. Construction
,
107
, p.
102933
.10.1016/j.autcon.2019.102933
14.
Hibiki
,
T.
, and
Ishii
,
M.
,
2003
, “
One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes
,”
Int. J. Heat Mass Transfer
,
46
(
25
), pp.
4935
4948
.10.1016/S0017-9310(03)00322-3
15.
Issa
,
R.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
16.
Mohamed
,
E.
,
Vincent
,
S.
, and
Le Chenadec
,
V.
, 01
2021
, “
Navier-Stokes Solvers for Incompressible Single-and Two-Phase Flows
,”
Commun. Comput. Phys.
,
x
(
x
), pp.
1
33.
10.4208/cicp.OA-2020-0044
17.
Sanderse
,
B.
,
Buist
,
J.
, and
Henkes
,
R. A.
,
2021
, “
A Novel Pressure-Free Two-Fluid Model for One-Dimensional Incompressible Multiphase Flow
,”
J. Comput. Phys.
,
426
, p.
109919
.10.1016/j.jcp.2020.109919
18.
Omgba-Essama
,
C.
,
2004
, Numerical Modelling of Transient Gas-Liquid Flows, Quantitative Research, dissertation,
Cranefield University
, Cranfield, UK.
19.
Liao
,
J.
,
Mei
,
R.
, and
Klausner
,
J.
,
2008
, “
A Study on the Numerical Stability of the Two-Fluid Model Near Ill-Posedness
,”
Int. J. Multiphase Flow
,
34
(
11
), pp.
1067
1087
.10.1016/j.ijmultiphaseflow.2008.02.010
20.
Blagojevic
,
B.
,
Nitsche
,
A.
, and
Sawodny
,
O.
,
2021
, “
Modeling of Transient Incompressible Concrete Mass Flow Through a Hose
,” IEEE Conference on Control Technology and Applications (
CCTA
), San Diego, CA, Aug. 9–11, pp.
424
429
.10.1109/CCTA48906.2021.9659068
21.
Zheng
,
L.
,
Wu
,
X.
,
Han
,
G.
,
Li
,
H.
,
Zuo
,
Y.
, and
Zhou
,
D.
,
2018
, “
Analytical Model for the Flow in Progressing Cavity Pump With the Metallic Stator and Rotor in Clearance Fit
,”
Math. Probl. Eng.
,
2018
, pp.
1
14
.10.1155/2018/3696930
22.
Shampine
,
L.
, and
Reichelt
,
M. W.
,
1997
, “
The Matlab Ode Suite
,”
SIAM J. Sci. Comput.
,
18
(
1
), pp.
1
22
.10.1137/S1064827594276424
23.
Wright
,
A.
,
1999
, “
Genetic Algorithms for Real Parameter Optimization
,”
Found. Genetic Algorithms
,
1
, pp.
205
218
.10.1016/B978-0-08-050684-5.50016-1
24.
Rao
,
C. V.
, and
Rawlings
,
J. B.
,
2000
, “
Nonlinear Moving Horizon State Estimation
,” Nonlinear Model Predictive Control. Progress in Systems and Control Theory, F. Allgöwer and A. Zheng (eds.), Vol.
26
, Birkhäuser, Basel, pp.
45
69
.10.1007/978-3-0348-8407-5_3
25.
Camacho
,
E. F.
, and
Bordons
,
C.
,
2007
,
Model Predictive Control
, 2nd ed.,
Springer
, London.10.1007/978-0-85729-398-5
26.
Hagenmeyer
,
V.
,
2002
, “
Robust Nonlinear Tracking Control Based on Differential Flatness
,”
Automatisierungstechnik
50
(
12
), p.
615
.10.1524/auto.2002.50.12.615
27.
Bronstein
,
I.
, and
Semendjaew
,
K.
,
1981
,
Handbook of Mathematics
, 20 ed.,
Teubner
,
Leipzig
.
You do not currently have access to this content.