Abstract
A novel self-triggered model predictive control (STMPC) strategy for linear constrained systems with additive disturbance is presented in this paper. The actuator adopts the control input from the controller by sample-and-hold fashion. At the same time, the triggering threshold is designed to ensure the feasibility of the algorithms and the stability of the closed-loop system. Furthermore, two different ways to generate the event triggered input signal, namely, using single sample and multiple samples, are proposed and it is shown that better triggering performance can be obtained as the number of samples increases. In the last, the effectiveness and applicability of the proposed methods are verified by simulation.
Issue Section:
Research Papers
References
1.
Hill
,
E.
,
Gadsden
,
S. A.
, and
Biglarbegian
,
M.
, 2022
, “
Robust Nonlinear Model Predictive Control With Model Predictive Sliding Mode for Continuous-Time Systems
,” ASME J. Dyn. Syst., Meas., Control
,
144
(3
), p. 031006.10.1115/1.40530262.
Liu
,
C.
,
Li
,
H.
,
Gao
,
J.
, and
Xu
,
D.
, 2018
, “
Robust Self-Triggered Min–Max Model Predictive Control for Discrete-Time Nonlinear Systems
,” Automatica
,
89
, pp. 333
–339
.10.1016/j.automatica.2017.12.0343.
Kumar
,
P.
,
Anoohya
,
B. B.
, and
Padhi
,
R.
, 2019
, “
Model Predictive Static Programming for Optimal Command Tracking: A Fast Model Predictive Control Paradigm
,” ASME J. Dyn. Syst., Meas., Control
,
141
(2
), p. 021014
.10.1115/1.40413564.
Mayne
,
D. Q.
,
Seron
,
M. M.
, and
Raković
,
S.
, 2005
, “
Robust Model Predictive Control of Constrained Linear Systems With Bounded Disturbances
,” Automatica
,
41
(2
), pp. 219
–224
.10.1016/j.automatica.2004.08.0195.
Luo
,
Y.
,
Xia
,
Y.
, and
Sun
,
Z.
, 2018
, “
Self-Triggered Model Predictive Control for Continue Linear Constrained System: Robustness and Stability
,” 37th Chinese Control Conference (CCC)
,
IEEE
, Wuhan, China, July 25–27, pp. 3612
–3617
.10.23919/ChiCC.2018.84842106.
Lu
,
L.
, and
Maciejowski
,
J. M.
, 2020
, “
Self-Triggered MPC With Performance Guarantee Using Relaxed Dynamic Programming
,” Automatica
,
114
, p. 108803
.10.1016/j.automatica.2020.1088037.
Eqtami
,
A.
,
Heshmati-Alamdari
,
S.
,
Dimarogonas
,
D. V.
, and
Kyriakopoulos
,
K. J.
, 2013
, “
Self-Triggered Model Predictive Control for Nonholonomic Systems
,” 2013 European Control Conference (ECC)
, Zurich, Switzerland, July 17–19, pp. 638
–643
.10.23919/ECC.2013.66696288.
Anta
,
A.
, and
Tabuada
,
P.
, 2010
, “
To Sample or Not to Sample: Self-Triggered Control for Nonlinear Systems
,” IEEE Trans. Autom. Control
,
55
(9
), pp. 2030
–2042
.10.1109/TAC.2010.20429809.
Aydiner
,
E.
,
Brunner
,
F. D.
,
Heemels
,
W.
, and
Allgower
,
F.
, 2015
, “
Robust Self-Triggered Model Predictive Control for Constrained Discrete-Time LTI Systems Based on Homothetic Tubes
,” 2015 European Control Conference (ECC)
,
IEEE
, Linz, Austria, July 15–17, pp. 1587
–1593
.10.1109/ECC.2015.733076410.
Lu
,
L.
, and
Maciejowski
,
J. M.
, 2019
, “
Robust Self-Triggered Mpc for Constrained Linear Systems With Additive Disturbance
,” IEEE 58th Conference on Decision and Control (CDC)
,
IEEE
, Nice, France, Dec. 11–13, pp. 445
–450
.10.1109/CDC40024.2019.902888911.
Heemels
,
W. H.
,
Donkers
,
M.
, and
Teel
,
A. R.
, 2013
, “
Periodic Event-Triggered Control for Linear Systems
,” IEEE Trans. Autom. Control
,
58
(4
), pp. 847
–861
.10.1109/TAC.2012.222044312.
Liu
,
C.
,
Gao
,
J.
,
Li
,
H.
, and
Xu
,
D.
, 2018
, “
Aperiodic Robust Model Predictive Control for Constrained Continuous-Time Nonlinear Systems: An Event-Triggered Approach
,” IEEE Trans. Cybern.
,
48
(5
), pp. 1397
–1405
.10.1109/TCYB.2017.269549913.
Li
,
H.
, and
Shi
,
Y.
, 2014
, “
Event-Triggered Robust Model Predictive Control of Continuous-Time Nonlinear Systems
,” Automatica
,
50
(5
), pp. 1507
–1513
.10.1016/j.automatica.2014.03.01514.
Brunner
,
F. D.
,
Heemels
,
W.
, and
Allgöwer
,
F.
, 2014
, “
Robust Self-Triggered MPC for Constrained Linear Systems
,” IEEE European Control Conference (ECC)
,
IEEE
, Strasbourg, France, June 24–27, pp. 472
–477
.10.1109/ECC.2014.686239715.
Henriksson
,
E.
,
Quevedo
,
D. E.
,
Sandberg
,
H.
, and
Johansson
,
K. H.
, 2012
, “
Self-Triggered Model Predictive Control for Network Scheduling and Control
,” IFAC Proc. Volumes
,
45
(15
), pp. 432
–438
.10.3182/20120710-4-SG-2026.0013216.
Xu
,
Q.
,
Wang
,
J.
,
Zhang
,
F.
, and
Li
,
K.
, 2015
, “
Stability of Networked Control System With Bandwidth Limitation and Bernoulli-Process Packet Loss in Feed-Back
,” 2015 34th Chinese Control Conference (CCC)
,
IEEE
, Hangzhou, China, July 28–30, pp. 7671
–7675
.17.
Heemels
,
W. P.
,
Johansson
,
K. H.
, and
Tabuada
,
P.
, 2012
, “
An Introduction to Event-Triggered and Self-Triggered Control
,” 2012 IEEE 51st IEEE Conference on Decision and Control (CDC)
,
IEEE
, Maui, HI, Dec. 10–13, pp. 3270
–3285
.10.1109/ChiCC.2015.726085718.
Brunner
,
F. D.
,
Heemels
,
W.
, and
Allgöwer
,
F.
, 2019
, “
Event-Triggered and Self-Triggered Control for Linear Systems Based on Reachable Sets
,” Automatica
,
101
, pp. 15
–26
.10.1016/j.automatica.2018.11.03519.
Sun
,
Z.
,
Dai
,
L.
,
Liu
,
K.
,
Dimarogonas
,
D. V.
, and
Xia
,
Y.
, 2019
, “
Robust Self-Triggered MPC With Adaptive Prediction Horizon for Perturbed Nonlinear Systems
,” IEEE Trans. Autom. Control
,
64
(11
), pp. 4780
–4787
.10.1109/TAC.2019.290522320.
Li
,
A.
, and
Sun
,
J.
, 2022
, “
Self-Triggered Model Predictive Control for Nonlinear Continuous-Time Networked System Via Ensured Performance Control Samples Selection
,” Int. J. Control
,
95
(10
), pp. 2793
–2801
.10.1080/00207179.2021.193618921.
Brunner
,
F. D.
,
Heemels
,
M.
, and
Allgöwer
,
F.
, 2016
, “
Robust Self-Triggered MPC for Constrained Linear Systems: A Tube-Based Approach
,” Automatica
,
72
, pp. 73
–83
.10.1016/j.automatica.2016.05.00422.
Berglind
,
J. B.
,
Gommans
,
T.
, and
Heemels
,
W.
, 2012
, “
Self-Triggered MPC for Constrained Linear Systems and Quadratic Costs
,” IFAC Proc. Vol.
,
45
(17
), pp. 342
–348
.10.3182/20120823-5-NL-3013.0005823.
Li
,
P.
,
Kang
,
Y.
,
Zhao
,
Y.-B.
, and
Wang
,
T.
, 2021
, “
A Novel Self-Triggered MPC Scheme for Constrained Input-Affine Nonlinear Systems
,” IEEE Trans. Circuits Syst. II: Express Briefs
,
68
(1
), pp. 306
–310
.10.1109/TCSII.2020.299940824.
Xie
,
H.
,
Dai
,
L.
,
Luo
,
Y.
, and
Xia
,
Y.
, 2021
, “
Robust MPC for Disturbed Nonlinear Discrete-Time Systems Via a Composite Self-Triggered Scheme
,” Automatica
,
127
, p. 109499
.10.1016/j.automatica.2021.10949925.
Dai
,
L.
,
Cannon
,
M.
,
Yang
,
F.
, and
Yan
,
S.
, 2021
, “
Fast Self-Triggered MPC for Constrained Linear Systems With Additive Disturbances
,” IEEE Trans. Autom. Control.
,
66
(8
), pp. 3624
–3637
.10.1109/TAC.2020.302273426.
Cui
,
D.
, and
Li
,
H.
, 2019
, “
Self-Triggered Model Predictive Control With Adaptive Selection of Sampling Number
,” IEEE International Conference on Industrial Cyber Physical Systems (ICPS)
,
IEEE
, Taipei, Taiwan, May 6–9, pp. 802
–807
.10.1109/ICPHYS.2019.878023327.
Cui
,
D.
, and
Li
,
H.
, 2022
, “
Dual Self-Triggered Model-Predictive Control for Nonlinear Cyber-Physical Systems
,” IEEE Trans. Syst., Man, Cybern.: Syst.
,
52
(6
), pp. 3442
–3452
.10.1109/TSMC.2021.307022928.
He
,
N.
, and
Shi
,
D.
, 2015
, “
Event-Based Robust Sampled-Data Model Predictive Control: A Non-Monotonic Lyapunov Function Approach
,” IEEE Trans. Circuits Syst. I: Regular Papers
,
62
(10
), pp. 2555
–2564
.10.1109/TCSI.2015.246899729.
Hashimoto
,
K.
,
Adachi
,
S.
, and
Dimarogonas
,
D. V.
, 2017
, “
Self-Triggered Model Predictive Control for Nonlinear Input-Affine Dynamical Systems Via Adaptive Control Samples Selection
,” IEEE Trans. Autom. Control
,
62
(1
), pp. 177
–189
.10.1109/TAC.2016.253774130.
Hu
,
X.
,
Yu
,
H.
,
Hao
,
F.
, and
Luo
,
Y.
, 2020
, “
Event-Triggered Model Predictive Control for Disturbed Linear Systems Under Two-Channel Transmissions
,” Int. J. Robust Nonlinear Control
,
30
(16
), pp. 6701
–6719
.10.1002/rnc.513331.
Yu
,
S.
,
Maier
,
C.
,
Chen
,
H.
, and
Allgöwer
,
F.
, 2013
, “
Tube MPC Scheme Based on Robust Control Invariant Set With Application to Lipschitz Nonlinear Systems
,” Syst. Control Lett.
,
62
(2
), pp. 194
–200
.10.1016/j.sysconle.2012.11.004Copyright © 2023 by ASME
You do not currently have access to this content.