Abstract

In this paper, two different active disturbance rejection control techniques based on notion of Smith Predictor are proposed for control of fractional order stable systems with time delay. In the proposed Smith Predictor-based fractional order linearized active disturbance rejection control (SP-FO-LADRC) technique, fractional order dynamics are treated as a part of generalized disturbance, and the concept of Smith Predictor is used to obtain delay less output, which is fed to an extended state observer (ESO), and an integer order control strategy is developed. To further ameliorate control performance of this technique, complete plant information of commensurate fractional order system is used to formulate another new technique, namely, Smith Predictor-based fractional order generalized active disturbance rejection control (SP-FO-GADRC), which incorporates fractional ESO and leads to formulation of fractional order control law. An extensive simulation study and robustness analysis conducted on three different examples is testimony to efficacy of proposed techniques.

References

1.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
,
198
,
Elsevier
of Mathematics in Science and Engineering
2.
Evans
,
R. M.
,
Katugampola
,
U. N.
, and
Edwards
,
D. A.
,
2017
, “
Applications of Fractional Calculus in Solving Abel-Type Integral Equations: Surface–Volume Reaction Problem
,”
Comput. Math. Appl.
,
73
(
6
), pp.
1346
1362
.10.1016/j.camwa.2016.12.005
3.
Monje
,
C.
,
Chen
,
Y.
,
Vinagre
,
B.
,
Xue
,
D.
, and
Feliu-Batlle
,
V.
,
2010
,
Fractional-Order Systems and Controls: Fundamentals and Applications
,
Springer
,
London
.
4.
Kothari
,
K.
,
Mehta
,
U.
, and
Vanualailai
,
J.
,
2018
, “
A Novel Approach of Fractional-Order Time Delay System Modeling Based on Haar Wavelet
,”
ISA Trans.
,
80
, pp.
371
380
.10.1016/j.isatra.2018.07.019
5.
Jain
,
S.
,
Hote
,
Y. V.
, and
Saxena
,
S.
,
2020
, “
Model Order Reduction of Commensurate Fractional-Order Systems Using Big Bang – Big Crunch Algorithm
,”
IETE Tech. Rev.
,
37
(
5
), pp.
453
464
.10.1080/02564602.2019.1653232
6.
Yu
,
W.
,
Luo
,
Y.
,
Chen
,
Y.
, and
Pi
,
Y.
,
2016
, “
Frequency Domain Modelling and Control of Fractional-Order System for Permanent Magnet Synchronous Motor Velocity Servo System
,”
IET Control Theory Appl.
,
10
(
2
), pp.
136
143
.10.1049/iet-cta.2014.1296
7.
Lamba
,
R.
,
Singla
,
S. K.
, and
Sondhi
,
S.
,
2017
, “
Fractional Order PID Controller for Power Control in Perturbed Pressurized Heavy Water Reactor
,”
Nucl. Eng. Des.
,
323
, pp.
84
94
.10.1016/j.nucengdes.2017.08.013
8.
Padula
,
F.
, and
Visioli
,
A.
,
2012
, “
Optimal Tuning Rules for Proportional-Integral-Derivative and Fractional-Order Proportional-Integral-Derivative Controllers for Integral and Unstable Processes
,”
IET Control Theory Appl.
,
6
(
6
), pp.
776
786
.10.1049/iet-cta.2011.0419
9.
Bettayeb
,
M.
, and
Mansouri
,
R.
,
2014
, “
Fractional IMC-PID-Filter Controllers Design for Non Integer Order Systems
,”
J. Process Control
,
24
(
4
), pp.
261
271
.10.1016/j.jprocont.2014.01.014
10.
Maâmar
,
B.
, and
Rachid
,
M.
,
2014
, “
IMC-PID-Fractional-Order-Filter Controllers Design for Integer Order Systems
,”
ISA Trans.
,
53
(
5
), pp.
1620
1628
.10.1016/j.isatra.2014.05.007
11.
Arya
,
P. P.
, and
Chakrabarty
,
S.
,
2020
, “
A Robust Internal Model-Based Fractional Order Controller for Fractional Order Plus Time Delay Processes
,”
IEEE Control Syst. Lett.
,
4
(
4
), pp.
862
867
.10.1109/LCSYS.2020.2994606
12.
Li
,
M.
,
Li
,
D.
,
Wang
,
J.
, and
Zhao
,
C.
,
2013
, “
Active Disturbance Rejection Control for Fractional-Order System
,”
ISA Trans.
,
52
(
3
), pp.
365
374
.10.1016/j.isatra.2013.01.001
13.
Li
,
D.
,
Ding
,
P.
, and
Gao
,
Z.
,
2016
, “
Fractional Active Disturbance Rejection Control
,”
ISA Trans.
,
62
, pp.
109
119
.10.1016/j.isatra.2016.01.022
14.
Niculescu
,
S.
,
2001
,
Delay Effects on Stability: A Robust Control Approach
,
Springer
,
London
.
15.
Richard
,
J.-P.
,
2003
, “
Time-Delay Systems: An Overview of Some Recent Advances and Open Problems
,”
Automatica
,
39
(
10
), pp.
1667
1694
.10.1016/S0005-1098(03)00167-5
16.
Ozyetkin
,
M. M.
,
Onat
,
C.
, and
Tan
,
N.
,
2020
, “
PI-PD Controller Design for Time Delay Systems Via the Weighted Geometrical Center Method
,”
Asian J. Control
,
22
(
5
), pp.
1811
1826
.10.1002/asjc.2088
17.
Alipouri
,
Y.
, and
Alipour
,
H.
,
2020
, “
Optimal Controller Design With Communication Delay for Solid Oxide Fuel Cell
,”
Asian J. Control
,
22
(
2
), pp.
677
686
.10.1002/asjc.1974
18.
Zhang
,
C.
,
Jiang
,
L.
,
Wu
,
Q. H.
,
He
,
Y.
, and
Wu
,
M.
,
2013
, “
Delay-Dependent Robust Load Frequency Control for Time Delay Power Systems
,”
IEEE Trans. Power Syst.
,
28
(
3
), pp.
2192
2201
.10.1109/TPWRS.2012.2228281
19.
Fu
,
C.
, and
Tan
,
W.
,
2020
, “
Linear Active Disturbance Rejection Control for Processes With Time Delays: IMC Interpretation
,”
IEEE Access
,
8
, pp.
16606
16617
.10.1109/ACCESS.2020.2967806
20.
Ozyetkin
,
M.
, and
Tan
,
N.
,
2017
, “
Practical Tuning Algorithm of pdμ Controller for Processes With Time Delay
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
9230
9235
.10.1016/j.ifacol.2017.08.1281
21.
Beschi
,
M.
,
Padula
,
F.
, and
Visioli
,
A.
,
2017
, “
The Generalised Isodamping Approach for Robust Fractional PID Controllers Design
,”
Int. J. Control
,
90
(
6
), pp.
1157
1164
.10.1080/00207179.2015.1099076
22.
Muñoz Vázquez
,
A. J.
, and
Treesatayapun
,
C.
,
2022
, “
Discrete-Time Fractional Fuzzy Control of Electrically Driven Mechanical Systems
,”
Asian J. Control.
,
24
(
3
), pp.
1133
1142
.10.1002/asjc.2520
23.
Muñoz-Vázquez
,
A. J.
,
Sánchez-Torres
,
J. D.
, and
Defoort
,
M.
,
2022
, “
Second-Order Predefined-Time Sliding-Mode Control of Fractional-Order Systems
,”
Asian J. Control
,
24
(
1
), pp.
74
82
.10.1002/asjc.2447
24.
Han
,
J.
,
2009
, “
From PID to Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
900
906
.10.1109/TIE.2008.2011621
25.
Guo
,
B.-Z.
, and
Zhao
,
Z.-L.
,
2016
,
Active Disturbance Rejection Control for Nonlinear Systems
,
John Wiley & Sons
.
26.
Gao
,
Z.
,
2006
, “
Active Disturbance Rejection Control: A Paradigm Shift in Feedback Control System Design
,”
American Control Conference
, Minneapolis, MN, June 14–16, pp.
2399
2405
.10.1109/ACC.2006.1656579
27.
Tan
,
W.
, and
Fu
,
C.
,
2016
, “
Linear Active Disturbance-Rejection Control: Analysis and Tuning Via IMC
,”
IEEE Trans. Ind. Electron.
,
63
(
4
), pp.
2350
2359
.10.1109/T IE.2015.2505668
28.
Zhou
,
R.
, and
Tan
,
W.
,
2015
, “
A Generalized Active Disturbance Rejection Control Approach for Linear Systems
,” IEEE 10th Conference on Industrial Electronics and Applications (
ICIEA
), Auckland, New Zealand, June 15–17, pp.
248
255
.10.1109/ICIEA.2015.7334120
29.
Fu
,
C.
, and
Tan
,
W.
,
2016
, “
Tuning of Linear ADRC With Known Plant Information
,”
ISA Trans.
,
65
, pp.
384
393
.10.1016/j.isatra.2016.06.016
30.
Jain
,
S.
, and
Hote
,
Y. V.
,
2020
, “
Generalized Active Disturbance Rejection Controller for Load Frequency Control in Power Systems
,”
IEEE Control Syst. Lett.
,
4
(
1
), pp.
73
78
.10.1109/LCSYS.2019.2923168
31.
Zhao
,
S.
, and
Gao
,
Z.
,
2014
, “
Modified Active Disturbance Rejection Control for Time-Delay Systems
,”
ISA Trans.
,
53
(
4
), pp.
882
888
.10.1016/j.isatra.2013.09.013
32.
Jain
,
S.
, and
Hote
,
Y. V.
,
2020
, “
Design of Generalized Active Disturbance Rejection Control for Delayed Systems: An Application to Load Frequency Control
,”
Int. J. Control
,
94
(
11
), pp.
3146
3160
.10.1080/00207179.2020.1752940
33.
Chen
,
S.
,
Xue
,
W.
,
Zhong
,
S.
, and
Huang
,
Y.
,
2018
, “
On Comparison of Modified ADRCs for Nonlinear Uncertain Systems With Time Delay
,”
Sci. China Inf. Sci.
,
61
(
7
), p.
70223
.10.1007/s11432-017-9403-x
34.
Zheng
,
Q.
, and
Gao
,
Z.
,
2014
, “
Predictive Active Disturbance Rejection Control for Processes With Time Delay
,”
ISA Trans.
,
53
(
4
), pp.
873
881
.10.1016/j.isatra.2013.09.021
35.
Zhang
,
B.
,
Tan
,
W.
, and
Li
,
J.
,
2020
, “
Tuning of Smith Predictor Based Generalized ADRC for Time-Delayed Processes Via IMC
,”
ISA Trans.
,
99
, pp.
159
166
.10.1016/j.isatra.2019.11.002
36.
Tan
,
W.
, and
Fu
,
C.
,
2015
, “
Analysis of Active Disturbance Rejection Control for Processes With Time Delay
,” American Control Conference (
ACC
), Chicago, IL, July 1–3, pp.
3962
3967
.10.1109/ACC.2015.7171948
37.
Shi
,
X.
,
Chen
,
Y.
, and
Huang
,
J.
,
2018
, “
Application of Fractional-Order Active Disturbance Rejection Controller on Linear Motion System
,”
Control Eng. Pract.
,
81
, pp.
207
214
.10.1016/j.conengprac.2018.09.014
38.
Gao
,
Z.
,
2016
, “
Active Disturbance Rejection Control for Nonlinear Fractional-Order Systems
,”
Int. J. Robust Nonlinear Control
,
26
(
4
), pp.
876
892
.10.1002/rnc.3344
39.
Li
,
Z.
,
Wei
,
Y.
,
Zhou
,
X.
,
Wang
,
J.
,
Wang
,
J.
, and
Wang
,
Y.
,
2020
, “
Differential Flatness-Based Adrc Scheme for Underactuated Fractional-Order Systems
,”
Int. J. Robust Nonlinear Control
,
30
(
7
), pp.
2832
2849
.10.1002/rnc.4905
40.
Huang
,
F.
,
1985
, “
Characteristic Conditions for Exponential Stability of Linear Dynamical Systems in Hilbert Spaces
,”
Ann. Diff. Eqs.
,
1
, pp.
43
56
.
41.
Birs
,
I.
,
Muresan
,
C.
,
Nascu
,
I.
, and
Ionescu
,
C.
,
2019
, “
A Survey of Recent Advances in Fractional Order Control for Time Delay Systems
,”
IEEE Access
,
7
, pp.
30951
30965
.10.1109/ACCESS.2019.2902567
42.
Chen
,
P.
,
Wang
,
B.
,
Tian
,
Y.
, and
Yang
,
Y.
,
2019
, “
Finite-Time Stability of a Time-Delay Fractional-Order Hydraulic Turbine Regulating System
,”
IEEE Access
,
7
, pp.
82613
82623
.10.1109/ACCESS.2019.2924141
43.
Chen
,
L.
,
Li
,
T.
,
Wu
,
R.
,
Chen
,
Y.
, and
Liu
,
Z.
,
2020
, “
Non-Fragile Control for a Class of Fractional-Order Uncertain Linear Systems With Time-Delay
,”
IET Control Theory Appl.
,
14
(
12
), pp.
1575
1589
.10.1049/iet-cta.2019.1125
44.
Geng
,
W.-T.
,
Lin
,
C.
, and
Chen
,
B.
,
2020
, “
Observer-Based Stabilizing Control for Fractional-Order Systems With Input Delay
,”
ISA Trans.
,
100
, pp.
103
108
.10.1016/j.isatra.2019.11.026
45.
Şenol
,
B.
,
Demiroğlu
,
U.
, and
Matušů
,
R.
,
2020
, “
Fractional Order Proportional Derivative Control for Time Delay Plant of the Second Order: The Frequency Frame
,”
J. Franklin Inst.
,
357
(
12
), pp.
7944
7961
.10.1016/j.jfranklin.2020.06.016
46.
Matignon
,
D.
,
1998
, “
Stability Properties for Generalized Fractional Differential Systems
,”
ESAIM: Proc.
,
5
, pp.
145
158
.10.1051/proc:1998004
47.
Narang
,
A.
,
Shah
,
S. L.
, and
Chen
,
T.
,
2011
, “
Continuous-Time Model Identification of Fractional-Order Models With Time Delays
,”
IET Control Theory Appl.
,
5
(
7
), pp.
900
912
.10.1049/iet-cta.2010.0718
48.
Tavakoli-Kakhki
,
M.
, and
Haeri
,
M.
,
2011
, “
Fractional Order Model Reduction Approach Based on Retention of the Dominant Dynamics: Application in IMC Based Tuning of FOPI and FOPID Controllers
,”
ISA Trans.
,
50
(
3
), pp.
432
442
.10.1016/j.isatra.2011.02.002
49.
Gao
,
Z.
,
2003
, “
Scaling and Bandwidth-Parameterization Based Controller Tuning
,”
Proceedings of the 2003 American Control Conference
, Vol.
6
, Denver, CO, June 4–6, pp.
4989
4996
.10.1109/ACC.2003.1242516
50.
Yoo
,
D.
,
Yau
,
S. S. T.
, and
Gao
,
Z.
,
2006
, “
On Convergence of the Linear Extended State Observer
,”
2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control
, Munich, Germany, 4–6 Oct. 2006, pp.
1645
1650
.10.1109/CACSD-CCA-ISIC.2006.4776888
51.
Pan
,
J.
,
Gao
,
Q.
,
Qiu
,
J.
, and
Wang
,
Y.
,
2017
, “
Type Number Based Steady-State Error Analysis on Fractional Order Control Systems
,”
Asian J. Control
,
19
(
1
), pp.
266
278
.10.1002/asjc.1372
52.
Aleksei
,
T.
,
Eduard
,
P.
, and
Juri
,
B.
,
2012
, “
A Flexible Matlab Tool for Optimal Fractional-Order PID Controller Design Subject to Specifications
,”
Proceedings of the 31st Chinese Control Conference
, Hefei, China, July 25–27, pp.
4698
4703
.https://ieeexplore.ieee.org/document/6390753
You do not currently have access to this content.