Abstract

Neural networks have been widely applied in system dynamics modeling. One particular type of networks, hybrid neural networks, combines a neural network model with a physical model, which can increase rate of convergence in training. However, most existing hybrid neural network methods require an explicit physical model constructed, which sometimes might not be feasible in practice or could weaken the capability of capturing complex and hidden physical phenomena. In this paper, we propose a novel approach to construct a hybrid neural network. The new method incorporates the physical information to the structure of network construction, but does not need an explicit physical model constructed. The method is then applied to modeling of bit-rock interaction in the down-hole drilling system as a case study, to demonstrate its effectiveness in modeling complex process and efficiency of convergence in training.

References

1.
Abiodun
,
O. I.
,
Jantan
,
A.
,
Omolara
,
A. E.
,
Dada
,
K. V.
,
Mohamed
,
N. A.
, and
Arshad
,
H.
,
2018
, “
State-of-the-Art in Artificial Neural Network Applications: A Survey
,”
Heliyon
,
4
(
11
), p.
e00938
.10.1016/j.heliyon.2018.e00938
2.
Garcia
,
H. E.
, and
Vilim
,
R. B.
,
1998
, “
Combining Physical Modeling, Neural Processing, and Likelihood Testing for Online Process Monitoring
,”
SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics
, Vol.
1
,
IEEE
, San Diego, CA, Oct. 11–14, pp. 806–810.10.1109/ICSMC.1998.725513
3.
Forssell
,
U.
, and
Lindskog
,
P.
,
1997
, “
Combining Semi-Physical and Neural Network Modeling: An Example Ofits Usefulness
,”
IFAC Proc. Vol.
,
30
(
11
), pp.
767
770
.10.1016/S1474-6670(17)42938-7
4.
Piron
,
E.
,
Latrille
,
E.
, and
Rene
,
F.
,
1997
, “
Application of Artificial Neural Networks for Crossflow Microfiltration Modelling: ‘Black-Box’ and Semi-Physical Approaches
,”
Comput. Chem. Eng.
,
21
(
9
), pp.
1021
1030
.10.1016/S0098-1354(96)00332-8
5.
Qi
,
H.
,
Zhou
,
X.-G.
,
Liu
,
L.-H.
, and
Yuan
,
W.-K.
,
1999
, “
A Hybrid Neural Network-First Principles Model for Fixed-Bed Reactor
,”
Chem. Eng. Sci.
,
54
(
13–14
), pp.
2521
2526
.10.1016/S0009-2509(98)00523-5
6.
Wang
,
S.
,
Wang
,
F.
,
Devabhaktuni
,
V. K.
, and
Zhang
,
Q.-J.
,
1999
, “
A Hybrid Neural and Circuit-Based Model Structure for Microwave Modeling
,”
1999 29th European Microwave Conference
,
IEEE, Munich, Germany
, Oct. 5–7, pp.
174
177
.10.1109/EUMA.1999.338301
7.
Dolara
,
A.
,
Grimaccia
,
F.
,
Leva
,
S.
,
Mussetta
,
M.
, and
Ogliari
,
E.
,
2015
, “
A Physical Hybrid Artificial Neural Network for Short Term Forecasting of pv Plant Power Output
,”
Energies
,
8
(
2
), pp.
1138
1153
.10.3390/en8021138
8.
Cao
,
M.
,
Wang
,
K.
,
Fujii
,
Y.
, and
Tobler
,
W.
,
2004
, “
A Hybrid Neural Network Approach for the Development of Friction Component Dynamic Model
,”
ASME J. Dyn. Sys., Meas., Control
,
126
(
1
), pp.
144
153
.10.1115/1.1649980
9.
Roubos
,
J.
,
Krabben
,
P.
,
Setnes
,
M.
,
Babuska
,
R.
,
Heijnen
,
J.
, and
Verbruggen
,
H.
,
1999
, “
Hybrid Model Development for Fed-Batch Bioprocesses; Combining Physical Equations With the Metabolic Network and Black-Box Kinetics
,”
6th Workshop on Fuzzy Systems
,
Brunel University, Uxbridge, London, UK, Sept. 8–9.https://www.researchgate.net/publication/2460680_Hybrid_Model_Development_for_Fed-Batch_Bioprocesses_Combining_Physical_Equations_With_the_Metabolic_Network_and_Black-Box_Kinetics
10.
Olausson
,
P.
,
Hägsta Hl
,
D.
,
Arriagada
,
J.
,
Dahlquist
,
E.
, and
Assadi
,
M.
,
2003
, “
Hybrid Model of an Evaporative Gas Turbine Power Plant Utilizing Physical Models and Artificial Neural Networks
,”
ASME
Paper No. GT2003-38116. 10.1115/GT2003-38116
11.
Krama
,
A.
,
Gharib
,
M.
,
Refaat
,
S. S.
, and
Palazzolo
,
A.
,
2021
, “
Design and Hardware in-the-Loop Validation of an Effective Super-Twisting Controller for Stick-Slip Suppression in Drill-String Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
11
), p. 111008. 10.1115/1.4051853
12.
Balanov
,
A.
,
Janson
,
N.
,
McClintock
,
P. V.
,
Tucker
,
R.
, and
Wang
,
C.
,
2003
, “
Bifurcation Analysis of a Neutral Delay Differential Equation Modelling the Torsional Motion of a Driven Drill-String
,”
Chaos, Solitons Fractals
,
15
(
2
), pp.
381
394
.10.1016/S0960-0779(02)00105-4
13.
Khulief
,
Y.
,
Al-Sulaiman
,
F.
, and
Bashmal
,
S.
,
2007
, “
Vibration Analysis of Drillstrings With Self-Excited Stick–Slip Oscillations
,”
J. Sound Vib.
,
299
(
3
), pp.
540
558
.10.1016/j.jsv.2006.06.065
14.
Richard
,
T.
,
Germay
,
C.
, and
Detournay
,
E.
,
2007
, “
A Simplified Model to Explore the Root Cause of Stick–Slip Vibrations in Drilling Systems With Drag Bits
,”
J. Sound Vib.
,
305
(
3
), pp.
432
456
.10.1016/j.jsv.2007.04.015
15.
Besselink
,
B.
,
Vromen
,
T.
,
Kremers
,
N.
, and
Van De Wouw
,
N.
,
2016
, “
Analysis and Control of Stick-Slip Oscillations in Drilling Systems
,”
IEEE Trans. Control Systems Technol.
,
24
(
5
), pp.
1582
1593
.10.1109/TCST.2015.2502898
16.
Germay
,
C.
,
Denoël
,
V.
, and
Detournay
,
E.
,
2009
, “
Multiple Mode Analysis of the Self-Excited Vibrations of Rotary Drilling Systems
,”
J. Sound Vib.
,
325
(
1–2
), pp.
362
381
.10.1016/j.jsv.2009.03.017
17.
Ritto
,
T. G.
,
Soize
,
C.
, and
Sampaio
,
R.
,
2009
, “
Non-Linear Dynamics of a Drill-String With Uncertain Model of the Bit–Rock Interaction
,”
Int. J. Non-Linear Mech.
,
44
(
8
), pp.
865
876
.10.1016/j.ijnonlinmec.2009.06.003
18.
Tian
,
D.
, and
Song
,
X.
,
2019
, “
Control of a Downhole Drilling System Using Integral Barrier Lyapunov Functionals
,” American Control Conference (
ACC
), Philadelphia, PA, July 10–12, pp.
1349
1354
.10.23919/ACC.2019.8815370
19.
Cho
,
K.
,
Van Merriënboer
,
B.
,
Gulcehre
,
C.
,
Bahdanau
,
D.
,
Bougares
,
F.
,
Schwenk
,
H.
, and
Bengio
,
Y.
,
2014
, “
Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation
,” Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar. Association for Computational Linguistics, Oct. 25–29, pp.
1724
1734
.
20.
Chung
,
J.
,
Gulcehre
,
C.
,
Cho
,
K.
, and
Bengio
,
Y.
,
2014
, “
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
,” CoRR, vol. abs/1412.3555, 2014.
21.
Wang
,
Y.
,
Sun
,
Z.
, and
Stelson
,
K. A.
,
2011
, “
Modeling, Control, and Experimental Validation of a Transient Hydrostatic Dynamometer
,”
IEEE Trans. Control Syst. Technol.
,
19
(
6
), pp.
1578
1586
.10.1109/TCST.2010.2082542
You do not currently have access to this content.