Abstract

Feedforward control is widely used in control systems since it can achieve high tracking performance by effectively compensating for known disturbances before they affect the system. For traditional feedforward control methods, the performance improvement highly depends on the model quality of the system model and the accuracy of the model-inversion. However, on one hand, in practice, the modeling error is inevitable, especially for precision motion systems with complex dynamics, on the other hand, the nonminimum phase (NMP) systems often lead to a problem that plant inversion is unstable and non- causal. Therefore, this paper proposes an approach that combines the benefits of data-driven feedforward control and the gradient descent method. This integrated approach aims to address challenges related to laborious model identification and unstable plant inversion simultaneously. The main idea is to replace the model with dedicated experiments on the system and to avoid calculating plant inversion by applying the gradient descent method to the learning process. The simulation and experimental results show that the algorithm can achieve the optimal point-to-point tracking performance without relying on model-inversion.

References

1.
Butterworth
,
J. A.
,
Pao
,
L. Y.
, and
Abramovitch
,
D. Y.
,
2009
, “
A Comparison of Control Architectures for Atomic Force Microscopes
,”
Asian J. Control
,
11
(
2
), pp.
175
181
.10.1002/asjc.93
2.
Clayton
,
G. M.
,
Tien
,
S.
,
Leang
,
K. K.
,
Zou
,
Q.
, and
Devasia
,
S.
,
2009
, “
A Review of Feedforward Control Approaches in Nanopositioning for High-Speed SPM
,”
ASME J. Dyn. Syst., Meas., Control
,
131
(
6
), p.
061101
.10.1115/1.4000158
3.
Butler
,
H.
,
2011
, “
Position Control in Lithographic Equipment [Applications of Control]
,”
IEEE Control Syst.
,
31
(
5
), pp.
28
47
.10.1109/MCS.2011.941882
4.
Boerlage
,
M.
,
Tousain
,
R.
, and
Steinbuch
,
M.
,
2004
, “
Jerk Derivative Feedforward Control for Motion Systems
,”
Proceedings of the 2004 American Control Conference
,
Boston, MA
, June 3–July 2, pp.
4843
4848
.10.23919/ACC.2004.1384080
5.
van der Meulen
,
S. H.
,
Tousain
,
R. L.
, and
Bosgra
,
O. H.
,
2008
, “
Fixed Structure Feedforward Controller Design Exploiting Iterative Trials: Application to a Wafer Stage and a Desktop Printer
,”
ASME J. Dyn. Sys., Meas., Control
,
130
(
5
), p.
051006
.10.1115/1.2957626
6.
Boerlage
,
M.
,
2006
, “
MIMO Jerk Derivative Feedforward for Motion Systems
,”
2006 American Control Conference
,
Minneapolis, MN
, June 14–16, p.
6
.10.1109/ACC.2006.1657326
7.
Fu
,
X.
,
Yang
,
X.
,
Zanchetta
,
P.
,
Liu
,
Y.
,
Ding
,
C.
,
Tang
,
M.
, and
Chen
,
Z.
,
2021
, “
Frequency-Domain Data-Driven Adaptive Iterative Learning Control Approach: With Application to Wafer Stage
,”
IEEE Trans. Ind. Electron.
,
68
(
10
), pp.
9309
9318
.10.1109/TIE.2020.3022503
8.
Chen
,
S.-L.
,
Li
,
X.
,
Teo
,
C. S.
, and
Tan
,
K. K.
,
2017
, “
Composite Jerk Feedforward and Disturbance Observer for Robust Tracking of fiexible Systems
,”
Automatica
,
80
, pp.
253
260
.10.1016/j.automatica.2017.02.024
9.
Dai
,
L.
,
Li
,
X.
,
Zhu
,
Y.
, and
Zhang
,
M.
,
2020
, “
Auto- Tuning of Model-Based Feedforward Controller by Feedback Control Signal in Ultraprecision Motion Systems
,”
Mech. Syst. Signal Process.
,
142
, p.
106764
.10.1016/j.ymssp.2020.106764
10.
Boeren
,
F.
, and
Oomen
,
T.
,
2013
, “
Iterative Feedforward Control: A Closed-Loop Identification Problem and a Solution
,”
52nd IEEE Conference on Decision and Control
, Firenze, Italy, Dec. 10–13, pp.
6694
6699
.
11.
Boeren
,
F.
,
Oomen
,
T.
, and
Steinbuch
,
M.
,
2015
, “
Iterative Motion Feedforward Tuning: A Data-Driven Approach Based on Instrumental Variable Identification
,”
Control Eng. Pract.
,
37
, pp.
11
19
.10.1016/j.conengprac.2014.12.015
12.
Boeren
,
F.
,
Bruijnen
,
D.
,
van Dijk
,
N.
, and
Oomen
,
T.
,
2014
, “
Joint Input Shaping and Feedforward for Point-to-Point Motion: Automated Tuning for an Industrial Nanopositioning System
,”
Mechatronics
,
24
(
6
), pp.
572
581
.10.1016/j.mechatronics.2014.03.005
13.
van de Wijdeven
,
J.
, and
Bosgra
,
O. H.
,
2010
, “
Using Basis Functions in Iterative Learning Control: Analysis and Design Theory
,”
Int. J. Control
,
83
(
4
), pp.
661
675
.10.1080/00207170903334805
14.
Phan
,
M. Q.
, and
Frueh
,
J. A.
,
1996
, “
Learning Control for Trajectory Tracking Using Basis Functions
,”
Proceedings of 35th IEEE Conference on Decision and Control
, Kobe, Japan, Dec. 13, pp.
2490
2492
.10.1109/CDC.1996.573465
15.
Uchiyama
,
M.
,
1978
, “
Formulation of High-Speed Motion Pattern of a Mechanical Arm by Trial
,”
Trans. Soc. Instrum. Control Eng.
,
14
(
6
), pp.
706
712
.10.9746/sicetr1965.14.706
16.
Arimoto
,
S.
,
Kawamura
,
S.
, and
Miyazaki
,
F.
,
1984
, “
Bettering Operation of Robots by Learning
,”
Robot. Syst.
,
1
, pp.
123
140
.10.1002/rob.4620010203
17.
Kim
,
D. I.
, and
Kim
,
S.
,
1996
, “
An Iterative Learning Control Method With Application for CNC Machine Tools
,”
IEEE Trans. Ind. Appl.
,
32
(
1
), pp.
66
72
.10.1109/28.485814
18.
Moore
,
K. L.
,
2001
, “
An Observation About Monotonic Convergence in Discrete-Time, P-Type Iterative Learning Control
,” Proceeding of the 2001 IEEE International Symposium on Intelligent Control (
ISIC '01
) (Cat. No.01CH37206),
Mexico City, Mexico
, Sept. 5–7, pp.
45
49
.10.1109/ISIC.2001.971482
19.
Liu
,
G.
, and
Hou
,
Z.
,
2019
, “
Iterative Learning Based Model Free Adaptive Control for Subway Trains With Speed and Input Constraints
,” 2019 Chinese Control Conference (
CCC
),
Guangzhou, China
, July 27–30, pp.
2436
2441
.10.23919/ChiCC.2019.8866193
20.
Norrlof
,
M.
, and
Gunnarsson
,
S.
,
2002
, “
Experimental Comparison of Some Classical Iterative Learning Control Algorithms
,”
IEEE Trans. Rob. Autom.
,
18
(
4
), pp.
636
641
.10.1109/TRA.2002.802210
21.
Ge
,
X.
,
Stein
,
J. L.
, and
Ersal
,
T.
,
2018
, “
Frequency Domain Analysis of Robust Monotonic Convergence of Norm-Optimal Iterative Learning Control
,”
IEEE Trans. Control Syst. Technol.
,
26
(
2
), pp.
637
651
.10.1109/TCST.2017.2692729
22.
Liu
,
L.
,
Dai
,
X.
,
Zhang
,
W.
, and
Zhang
,
F.
,
2018
, “
A Data- Driven Model of Optimal Iterative Learning Control for Distributed Parameter Systems
,” 2018 5th International Conference on Information, Cybernetics, and Computational Social Systems (
ICCSS
),
Hangzhou, China
, Aug. 16–19, pp.
495
498
.10.1109/ICCSS.2018.8572311
23.
Zhang, X., Li, M., Ding
,
H., and Yao
, X.,
2019
, “
Data-Driven Tuning of Feedforward Controller Structured With Infinite Impulse Response filter Via Iterative Learning Control
,”
IET Control Theory Appl.
,
13
(
8
), pp.
1062
1070
.10.1049/iet-cta.2018.5616
24.
Butterworth
,
J. A.
,
Pao
,
L. Y.
, and
Abramovitch
,
D. Y.
,
2012
, “
Analysis and Comparison of Three Discrete-Time Feedforward Model-Inverse Control Techniques for Nonminimum-Phase Systems
,”
Mechatronics
,
22
(
5
), pp.
577
587
.10.1016/j.mechatronics.2011.12.006
25.
van Zundert
,
J.
, and
Oomen
,
T.
,
2018
, “
On Inversion-Based Approaches for Feedforward and ILC
,”
Mechatronics
,
50
, pp.
282
291
.10.1016/j.mechatronics.2017.09.010
26.
Yang
,
L.
, and
Zhang
,
H.
,
2022
, “
Data-Driven Feedforward Parameter Tuning Optimization Method Under Actuator Constraints
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
3429
3439
.10.1109/TMECH.2022.3141738
27.
Bruijnen
,
D.
, and
van Dijk
,
N.
,
2012
, “
Combined Input Shaping and Feedforward Control for fiexible Motion Systems
,” American Control Conference (
ACC
), Montreal, QC, June 27–29, pp.
2473
2478
.10.1109/ACC.2012.6315055
28.
Miu
,
D. K.
,
1993
,
Mechatronics: Electromechanics and Control Mechanics
,
Springer-Verlag
,
New York
.
29.
Åström
,
K. J.
,
Hagander
,
P.
, and
Sternby
,
J.
,
1984
, “
Zeros of Sampled Systems
,”
Automatica
,
20
(
1
), pp.
31
38
.10.1016/0005-1098(84)90062-1
30.
Rojas
,
C.
,
Oomen
,
T.
,
Hjalmarsson
,
H.
, and
Wahlberg
,
B.
,
2012
, “
Analyzing Iterations in Identification With Application to Nonparametric Hinf-Norm Estimation
,”
Automatica
,
48
(
11
), pp.
2776
2790
.10.1016/j.automatica.2012.08.025
31.
Wahlberg
,
B.
,
Syberg
,
M.
, and
Hjalmarsson
,
H.
,
2010
, “
Non-Parametric Methods for L2-Gain Estimation Using Iterative Experiments
,”
Automatica
,
46
(
8
), pp.
1376
1381
.10.1016/j.automatica.2010.05.012
32.
Oomen
,
T.
,
van der Maas
,
R.
,
Rojas
,
C.
, and
Hjalmarsson
,
H.
,
2014
, “
Iterative Data-Driven Hinf Norm Estimation of Multivariable Systems: With Application to Robust Active Vibration Isolation
,”
IEEE Trans. Control Syst. Technol.
,
22
(
6
), pp.
2247
2260
.10.1109/TCST.2014.2303047
33.
Freeman
,
C.
,
Lewin
,
P.
, and
Rogers
,
E.
,
2007
, “
Further Results on the Experimental Evaluation of Iterative Learning Control Algorithms for Non-Minimum Phase Plants
,”
Int. J. Control
,
80
(
4
), pp.
569
582
.10.1080/00207170601136726
34.
Butcher
,
M.
,
Karimi
,
A.
, and
Longchamp
,
R.
,
2008
, “
Iterative Learning Control Based on Stochastic Approximation
,”
IFAC Trienn. World Congr.
,
17
, pp.
1478
1483
.10.3182/20080706-5-KR-1001.00253
35.
Bristow
,
D.
,
Tharayil
,
M.
, and
Alleyne
,
A.
,
2006
, “
A Sur- Vey of Iterative Learning Control: A Learning- Based Method for High-Performance Tracking Control
,”
IEEE Control Syst. Mag.
,
26
(
3
), pp.
96
114
.10.1109/MCS.2006.1636313
You do not currently have access to this content.