Abstract
A one-dimensional, isothermal model for a direct methanol fuel cell (DMFC) is presented. This model accounts for the kinetics of the multi-step methanol oxidation reaction at the anode. Diffusion and crossover of methanol are modeled and the mixed potential of the oxygen cathode due to methanol crossover is included. Kinetic and diffusional parameters are estimated by comparing the model to data from a DMFC. This semi-analytical model can be solved rapidly so that it is suitable for inclusion in real-time system level DMFC simulations.
References
1.
Cruickshank
,
J.
, and
Scott
,
K.
,
1998, “The Degree and
Effect of Methanol Crossover in the Direct Methanol Fuel
Cell
,” J. Power Sources
0378-7753
70
(1
), pp.
40
-47
.2.
Scott
,
K.
,
Taama
, W.
M.
, Argyropoulos
,
P.
, and
Sundmacher
,
K.
,
1999. “The Impact of
Mass Transport and Methanol Crossover on the Direct Methanol Fuel
Cell
,” J. Power Sources
0378-7753
83
(1-2
), pp.
204
-216
.3.
Ren
,
X.
,
Springer
, T.
E.
, and Gottesfeld
,
S.
,
2000, “Water and
Methanol Uptakes in Nafion Membranes and Membrane Effects on Direct Methanol
Cell Performance
,” J. Electrochem. Soc.
0013-4651
147
(1
), pp.
92
-98
.4.
Dohle
,
H.
,
Divisek
,
J.
,
Merggel
,
J.
,
Oetjen
, H.
F.
, Zingler
,
C.
, and
Stolten
,
D.
,
2002, “Recent
Developments of the Measurement of the Methanol Permeation in a Direct
Methanol Fuel Cell
,” J. Power Sources
0378-7753
105
(2
), pp.
274
-282
.5.
Carrette
,
L.
,
Friedrich
, K.
A.
, and Stimming
,
U.
,
2001, “Fuel
Cells—Fundamentals and Applications
,” Fuel
Cells
1615-6846
1
(1
), pp.
5
-39
.6.
Gasteiger
, H.
A.
, Markovic
, N.
M.
, and Ross
, P.
N.
, 1995,
“H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and
Pt-Ru. 1. Rotating-Disk Electrode Studies of the Pure Gases Including
Temperature Effects
,” J Phys Chem
,
99
(20
), pp.
8290
-8301
.7.
Iwasita
,
T.
,
2002, “Electrocatalysis
of Methanol Oxidation
,” Electrochim. Acta
0013-4686
47
(22-23
), pp.
3663
-3674
.8.
Desai
,
S.
, and
Neurock
,
M.
,
2003, “A First
Principles Analysis of CO Oxidation Over Pt and Pt66.7%Ru33.3%(111)
Surfaces
,” Electrochim. Acta
0013-4686
48
(25-26
), pp.
3759
-3773
.9.
Meyers
, J.
P.
, and Newman
,
J.
,
2002, “Simulation of the
Direct Methanol Fuel Cell-II. Modeling and Data Analysis of Transport and
Kinetic Phenomena
,” J. Electrochem. Soc.
0013-4651
149
(6
), pp.
A718
-A728
.10.
Baxter
, S.
F.
, Battaglia
, V.
S.
, and White
, R.
E.
, 1999,
“Methanol Fuel Cell Model: Anode
,” J.
Electrochem. Soc.
0013-4651
146
(2
), pp.
437
-447
.11.
Kulikovsky
, A.
A.
, 2003,
“Analytical Model of the Anode Side of DMFC: The Effect of Non-Tafel Kinetics on Cell Performance
,”
Electrochem. Commun.
1388-2481
5
(7), pp.
530
-538
.12.
Wang
, Z.
H.
, and Wang
, C.
Y.
, 2003,
“Mathematical Modeling of Liquid-Feed Direct Methanol Fuel
Cells
,” J. Electrochem. Soc.
0013-4651
150
(4
), pp.
A508
-A519
.13.
Nordlund
,
J.
, and
Lindbergh
,
G.
,
2002, “A Model for the
Porous Direct Methanol Fuel Cells Anode
,” J.
Electrochem. Soc.
0013-4651
149
(9
), pp.
A1107
-A1113
.14.
Wilson
, M.
S.
, 1993,
U.S. Patent 5,211,984.15.
Slattery
, J.
C.
, 1999,
Advanced Transport Phenomena
Cambridge University Press
, Cambridge,
MA.16.
Scott
,
K.
,
Taama
,
W.
, and
Cruickshank
,
J.
,
1997, “Performance and
Modelling of a Direct Methanol Solid Polymer Electrolyte Fuel
Cell
,” J. Power Sources
0378-7753
65
(1-2
), pp.
159
-171
.17.
Parthasarathy
,
A.
,
Srinivasan
,
S.
,
Appleby
, A.
J.
, and Martin
, C.
R.
, 1992,
“Temperature Dependence of the Electrode Kinetics of Oxygen
Reduction at the Platinum/Nafion Interface—a Microelectrode
Investigation
,” J. Electrochem. Soc.
0013-4651
139
(9
), pp.
2530
-2537
.18.
Ren
, X.
M.
, Springer
, T.
E.
, Zawodzinski
, T.
A.
, and Gottesfeld
,
S.
,
2000, “Methanol
Transport through Nafion Membranes—Electro-Osmotic Drag Effects on Potential
Step Measurements
,” J. Electrochem. Soc.
0013-4651
147
(2
), pp.
466
-474
.Copyright © 2004
by American Society of Mechanical Engineers
You do not currently have access to this content.