Multilayer nickel–copper coatings consisting of layers of nickel–copper alloy and a mixture of metals with hydroxides were obtained by electrodeposition from polyligand pyrophosphate–ammonia electrolyte by the two-pulse potentiostatic method. A comparison between two different electrodes with the same real surface area is presented. The equality of the surface area of electrodes deposited from the electrolyte containing different copper and nickel ions’ concentration ratio was achieved by deposition of different numbers of layers. It is shown that the increase in the copper content in electrolyte leads to an increase in the copper ions’ content in the coating and the electrode surface develops more intensively. Freshly deposited coatings have approximately the same catalytic activity in the glucose oxidation reaction in the alkaline solution. But a multilayer coating with a higher copper content is more corrosion resistant and more stable in long-term electrolysis.

References

1.
Brouzgou
,
A.
, and
Tsiakaras
,
P.
,
2015
, “
Electrocatalysts for Glucose Electrooxidation Reaction: A Review
,”
Top. Catal.
,
58
(
18–20
), pp.
1311
1327
.
2.
Gao
,
M.
,
Liu
,
X.
,
Irfan
,
M.
,
Shi
,
J.
,
Wang
,
X.
, and
Zhang
,
P.
,
2018
, “
Nickle-Cobalt Composite Catalyst-Modified Activated Carbon Anode for Direct Glucose Alkaline Fuel Cell
,”
J. Electroanal. Chem.
,
43
(
3
), pp.
1805
1815
.
3.
Niitsu
,
K.
,
Ando
,
T.
,
Kobayashi
,
A.
, and
Nakazato
,
K.
,
2016
, “
Enhancement in Open-Circuit Voltage of Implantable CMOS-Compatible Glucose Fuel Cell by Improving the Anodic Catalyst
,”
Jpn. J. Appl. Phys.
,
56
(
1S
),
01AH04
.
4.
Spets
,
J. P.
,
Lampinen
,
M. J.
,
Kiros
,
Y.
,
Rantanen
,
J.
, and
Anttila
,
T.
,
2012
, “
Direct Glucose Fuel Cell With the Anion Exchange Membrane in the Near-Neutral-State Electrolyte
,” ,
7
, pp.
11696
11705
.
5.
Apblett
,
C. A.
,
Ingersoll
,
D.
,
Sarangapani
,
S.
,
Kelly
,
M.
, and
Atanassov
,
P.
,
2010
, “
Direct Glucose Fuel Cell: Noble Metal Catalyst Anode Polymer Electrolyte Membrane Fuel Cell With Glucose Fuel
,”
J. Electrochem. Soc.
,
157
(
1
), pp.
B86
B89
.
6.
Wojnicki
,
M.
,
Luty-Błocho
,
M.
,
Dobosz
,
I.
,
Grzonka
,
J.
,
Pacławski
,
K.
,
Kurzydłowski
,
K. J.
, and
Paclawski
,
K.
,
2013
, “
Electro-Oxidation of Glucose in Alkaline Media on Graphene Sheets Decorated With Gold Nanoparticles
,”
Mater. Sci. Appl.
,
4
(
02
), pp.
162
169
.
7.
Yang
,
Z.
,
Miao
,
Y.
,
Wang
,
T.
,
Liang
,
X.
,
Xiao
,
M.
,
Li
,
W.
, and
Yang
,
Y.
,
2014
, “
The Self-Adsorption of Ni Ultrathin Layer on Glassy Carbon Surface and Their Electrocatalysis Toward Glucose
,”
J. Electrochem. Soc.
,
161
(
6
), pp.
H375
H378
.
8.
Sincheskul
,
A.
,
Pancheva
,
H.
,
Loboichenko
,
V.
,
Avina
,
S.
,
Khrystych
,
O.
, and
Pilipenko
,
A.
,
2017
, “
Design of the Modified Oxide-Nickel Electrode With Improved Electrical Characteristics
,”
East.-Eur. J. Enterp. Technol.
,
5
(
6(89)
), pp.
23
28
.
9.
Pospelov
,
A. P.
,
Pilipenko
,
A. I.
,
Kamarchuk
,
G. V.
,
Fisun
,
V. V.
,
Yanson
,
I. K.
, and
Faulques
,
E.
,
2015
, “
A New Method for Controlling the Quantized Growth of Dendritic Nanoscale Point Contacts Via Switchover and Shell Effects
,”
J. Phys. Chem. C
,
119
(
1
), pp.
632
6399
.
10.
Shtefan
,
V. V.
, and
Smirnova
,
A. Y.
,
2015
, “
Synthesis of Ce-, Zr-, and Cu-Containing Oxide Coatings on Titanium Using Microarc Oxidation
,”
Russ. J. Electrochem.
,
51
, pp.
1168
1175
.
11.
Yang
,
Y. L.
,
Liu
,
X. H.
,
Hao
,
M. Q.
, and
Zhang
,
P. P.
,
2015
, “
Performance of a Low-Cost Direct Glucose Fuel Cell With an Anion-Exchange Membrane
,”
Int. J. Hydrogen Energy
,
40
(
34
), pp.
10979
10984
.
12.
Miao
,
F.
,
Tao
,
B.
, and
Chu
,
J.
,
2013
, “
Nonenzymatic Alkaline Direct Glucose Fuel Cell With a Silicon Microchannel Plate Supported Electrocatalytic Electrode
,”
J. Fuel Cell Sci. Technol.
,
10
(
4
),
041003
.
13.
Oncescu
,
V.
, and
Erickson
,
D.
,
2013
, “
High Volumetric Power Density, Non-Enzymatic, Glucose Fuel Cells
,”
Sci. Rep.
,
3
,
1226
.
14.
Chen
,
J.
,
Zheng
,
H.
,
Kang
,
J.
,
Yang
,
F.
,
Cao
,
Y.
, and
Xiang
,
M.
,
2017
, “
An Alkaline Direct Oxidation Glucose Fuel Cell Using Three-Dimensional Structural Au/Ni-Foam as Catalytic Electrodes
,”
RSC Adv.
,
7
(
5
), pp.
3035
3042
.
15.
Torto
,
N.
,
Ruzgas
,
T.
, and
Gorton
,
L.
,
1999
, “
Electrochemical Oxidation of Mono-and Disaccharides at Fresh as Well as Oxidized Copper Electrodes in Alkaline Media
,”
J. Electroanal. Chem.
,
464
(
2
), pp.
252
258
.
16.
Zhang
,
X.
,
Luo
,
J.
,
Tang
,
P.
,
Morante
,
J. R.
,
Arbiol
,
J.
,
Xu
,
C.
,
Li
,
Q.
, and
Fransaer
,
J.
,
2018
, “
Ultrasensitive Binder-Free Glucose Sensors Based on the Pyrolysis of In Situ Grown Cu MOF
,”
Sens. Actuators B
,
254
, pp.
272
281
.
17.
D’Eramo
,
F.
,
Marioli
,
J. M.
,
Arévalo
,
A. A.
, and
Sereno
,
L. E.
,
1999
, “
HPLC Analysis of Carbohydrates With Electrochemical Detection at a Poly-1-Naphthylamine/Copper Modified Electrode
,”
Electroanalysis
,
11
(
7
), pp.
481
486
.
18.
Kang
,
X.
,
Mai
,
Z.
,
Zou
,
X.
,
Cai
,
P.
, and
Mo
,
J.
,
2007
, “
A Sensitive Nonenzymatic Glucose Sensor in Alkaline Media With a Copper Nanocluster/Multiwall Carbon Nanotube-Modified Glassy Carbon Electrode
,”
Anal. Biochem.
,
363
(
1
), pp.
143
150
.
19.
Huang
,
Y.
,
Zhang
,
H.
,
Xu
,
X.
,
Zhou
,
J.
,
Lu
,
F.
,
Zhang
,
Z.
,
Hu
,
Z.
, and
Luo
,
J.
,
2018
, “
Fast Synthesis of Porous Copper Nanoclusters for Fluorescence Detection of Iron Ions in Water Samples
,”
Spectrochim. Acta Part A
,
202
, pp.
65
69
.
20.
Ahmad
,
R.
,
Tripathy
,
N.
,
Ahn
,
M. S.
,
Bhat
,
K. S.
,
Mahmoudi
,
T.
,
Wang
,
Y.
,
Yoo
,
J. Y.
,
Kwon
,
D. W.
,
Yang
,
H. Y.
, and
Hahn
,
Y. B.
,
2017
, “
Highly Efficient Non-Enzymatic Glucose Sensor Based on CuO Modified Vertically-Grown ZnO Nanorods on Electrode
,”
Sci. Rep.
,
7
(
1
),
5715
.
21.
Raziq
,
A.
,
Tariq
,
M.
,
Hussain
,
R.
,
Mahmood
,
M. H.
,
Ullah
,
I.
,
Khan
,
J.
, and
Muhammad
,
M.
,
2018
, “
Highly Sensitive, Non-Enzymatic and Precious Metal Free Electrochemical Glucose Sensor Based on Ni–Cu/TiO2 Modified Glassy Carbon Electrode
,”
J. Serb. Chem. Soc.
,
83
(
6
), pp.
733
744
.
22.
Danaee
,
I.
,
Jafarian
,
M.
,
Forouzandeh
,
F.
,
Gobal
,
F.
, and
Mahjani
,
M. G.
,
2008
, “
Kinetic Interpretation of a Negative Time Constant Impedance of Glucose Electrooxidation
,”
J. Phys. Chem. B
,
112
, pp.
15933
15940
.
23.
Qiu
,
R.
,
Zhang
,
X. L.
,
Qiao
,
R.
,
Li
,
Y.
,
Kim
,
Y. I.
, and
Kang
,
Y. S.
,
2007
, “
CuNi Dendritic Material: Synthesis, Mechanism Discussion, and Application as Glucose Sensor
,”
Chem. Mater.
,
19
(
17
), pp.
4174
4180
.
24.
Yeo
,
I. H.
, and
Johnson
,
D. C.
,
2001
, “
Electrochemical Response of Small Organic Molecules at Nickel–Copper Alloy Electrodes
,”
J. Electroanal. Chem.
,
495
(
2
), pp.
110
119
.
25.
Wolfart
,
F.
,
Maciel
,
A.
,
Nagata
,
N.
, and
Vidotti
,
M.
,
2013
, “
Electrocatalytical Properties Presented by Cu/Ni Alloy Modified Electrodes Toward the Oxidation of Glucose
,”
J. Solid State Electrochem.
,
17
(
5
), pp.
1333
1338
.
26.
Jafarian
,
M.
,
Forouzandeh
,
F.
,
Danaee
,
I.
,
Gobal
,
F.
, and
Mahjani
,
M. G.
,
2009
, “
Electrocatalytic Oxidation of Glucose on Ni and NiCu Alloy Modified Glassy Carbon Electrode
,”
J. Solid State Electrochem.
,
13
(
8
), pp.
1171
1179
.
27.
An
,
L.
,
Zhao
,
T. S.
,
Zeng
,
L.
, and
Yan
,
X. H.
,
2014
, “
Performance of an Alkaline Direct Ethanol Fuel Cell With Hydrogen Peroxide as Oxidant
,”
Int. J. Hydrogen Energy
,
39
(
5
), pp.
2320
2324
.
28.
Yan
,
X. H.
,
Zhao
,
T. S.
,
An
,
L.
,
Zhao
,
G.
, and
Shi
,
L.
,
2016
, “
A Direct Methanol–Hydrogen Peroxide Fuel Cell With a Prussian Blue Cathode
,”
Int. J. Hydrogen Energy
,
41
(
9
), pp.
5135
5140
.
29.
Yamada
,
Y.
,
Yoneda
,
M.
, and
Fukuzumi
,
S.
,
2015
, “
High and Robust Performance of H2O2 Fuel Cells in the Presence of Scandium Ion
,”
Energy Environ. Sci.
,
8
(
6
), pp.
1698
1701
.
30.
Miglbauer
,
E.
,
Wójcik
,
P. J.
, and
Głowacki
,
E. D.
,
2018
, “
Single-Compartment Hydrogen Peroxide Fuel Cells With Poly (3, 4-Ethylenedioxythiophene) Cathodes
,”
Chem. Commun.
,
54
(
84
), pp.
11873
11876
.
31.
Guo
,
F.
,
Cheng
,
K.
,
Ye
,
K.
,
Wang
,
G.
, and
Cao
,
D.
,
2016
, “
Preparation of Nickel-Cobalt Nanowire Arrays Anode Electro-Catalyst and Its Application in Direct Urea/Hydrogen Peroxide Fuel Cell
,”
Electrochim. Acta
,
199
, pp.
290
296
.
32.
Yang
,
F.
,
Cheng
,
K.
,
Xiao
,
X.
,
Yin
,
J.
,
Wang
,
G.
, and
Cao
,
D.
,
2014
, “
Nickel and Cobalt Electrodeposited on Carbon Fiber Cloth as the Anode of Direct Hydrogen Peroxide Fuel Cell
,”
J. Power Sources
,
245
, pp.
89
94
.
33.
An
,
L.
,
Zhao
,
T. S.
, and
Zeng
,
L.
,
2013
, “
Agar Chemical Hydrogel Electrode Binder for Fuel-Electrolyte-Fed Fuel Cells
,”
Appl. Energy
,
109
, pp.
67
71
.
34.
An
,
L.
,
Zhao
,
T. S.
,
Zhou
,
X. L.
,
Wei
,
L.
, and
Yan
,
X. H.
,
2012
, “
A High-Performance Ethanol–Hydrogen Peroxide Fuel Cell
,”
RSC Adv.
,
4
(
110
), pp.
65031
65034
.
35.
An
,
L.
,
Zhao
,
T. S.
,
Chen
,
R.
, and
Wu
,
Q. X.
,
2011
, “
A Novel Direct Ethanol Fuel Cell With High Power Density
,”
J. Power Sources
,
196
(
15
), pp.
6219
6222
.
36.
An
,
L.
,
Zhao
,
T. S.
, and
Xu
,
J. B.
,
2011
, “
A Bi-Functional Cathode Structure for Alkaline-Acid Direct Ethanol Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
20
), pp.
13089
13095
.
37.
An
,
L.
, and
Zhao
,
T. S.
,
2011
, “
Performance of an Alkaline-Acid Direct Ethanol Fuel Cell
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
9994
9999
.
38.
Khadke
,
P. S.
,
Sethuraman
,
P.
,
Kandasamy
,
P.
,
Parthasarathi
,
S.
, and
Shukla
,
A. K.
,
2009
, “
A Self-Supported Direct Borohydride-Hydrogen Peroxide Fuel Cell System
,”
Energies
,
2
(
2
), pp.
190
201
.
39.
Maizelis
,
A. A.
,
Bairachniy
,
B. I.
,
Trubnikova
,
L. V.
, and
Savitsky
,
B. A.
,
2012
, “
The Effect of Architecture of the Cu/(Ni-Cu) Multilayer Coatings on Their Microhardness
,” ,
19
(
2
), pp.
238
244
.
40.
Maizelis
,
A.
, and
Bairachny
,
B.
, “
Voltammetric Analysis of Phase Composition of Zn-Ni Alloy Thin Films Electrodeposited From Weak Alkaline Polyligand Electrolyte
,”
J. Nano- Electron. Phys.
,
9
(
5
),
05010
.
41.
Maizelis
,
A.
, and
Bairachniy
,
B.
,
2017
, “
Electrochemical Formation of Multilayer SnO2-SbxOy Coating in Complex Electrolyte
,”
Nanosc. Res. Lett.
,
12
(
1
), p.
119
.
42.
Maizelis
,
A.
, and
Bairachniy
,
B.
,
2016
, “
Electrochemical Formation of Multilayer Metal and Metal Oxide Coatings in Complex Electrolytes
,”
International Conference on Nanotechnology and Nanomaterials
,
Springer, Cham
,
August
, pp.
557
572
.
43.
Maizelis
,
A. A.
,
2017
, “
Voltammetric Analysis of Phase Composition of Zn-Ni Alloy Thin Films Electrodeposited Under Different Electrolyze Modes
,”
2017 IEEE 7th International Conference Nanomaterials: Application Properties (NAP)
,
02NTF13
.
44.
Gira
,
M. J.
,
Tkacz
,
K. P.
, and
Hampton
,
J. R.
,
2016
, “
Physical and Electrochemical Area Determination of Electrodeposited Ni, Co, and NiCo Thin Films
,”
Nano Converg.
,
3
(
1
), p.
6
.
45.
Sattarahmady
,
N.
, and
Heli
,
H.
,
2012
, “
A Non-Enzymatic Amperometric Sensor for Glucose Based on Cobalt Oxide Nanoparticles
,”
J. Exp. Nanosci.
,
7
(
5
), pp.
529
546
.
46.
Jafarian
,
M.
,
Moghaddam
,
R. B.
,
Mahjani
,
M. G.
, and
Gobal
,
F.
,
2006
, “
Electro-Catalytic Oxidation of Methanol on a Ni–Cu Alloy in Alkaline Medium
,”
J. Appl. Electrochem.
,
36
(
8
), pp.
913
918
.
47.
Norouzi
,
B.
, and
Norouzi
,
M.
, “
Methanol Electrooxidation on Novel Modified Carbon Paste Electrodes With Supported Poly (Isonicotinic Acid)(Sodium Dodecyl Sulfate)/Ni-Co Electrocatalysts
,”
J. Solid State Electrochem.
,
16
(
9
), pp.
3003
3010
.
You do not currently have access to this content.