Abstract

Battery thermal management system (BTMS) is a hot research area for electric vehicles (EVs). Common BTMS schemes include air cooling, liquid cooling, and phase-change materials (PCMs). Air cooling BTMS is widely used in EVs because of its simplicity, high efficiency, and low cost. However, past air cooling BTMS research focused on inlet flow, air channel design, and battery layout. Few studies have focused on improving the heat transfer efficiency of battery packs. This paper aimed to improve the heat transfer efficiency of air cooling BTMS by using herringbone fins. Both inline and staggered arrangements of lithium-ion cells were considered. Moreover, the effects of transverse pitch, longitudinal pitch, fin height, fin number, and inlet velocity were examined. Installation of herringbone fins with optimal values of parameters caused a decrease in average temperature of cells by 3.687 K in the inline arrangement and 4.15 K in the staggered arrangement. Furthermore, a significant improvement in temperature uniformity was also observed. The simulation results will be helpful for the design of air cooling BTMS.

References

1.
Liu
,
W.
,
Wang
,
M.
,
Gao
,
X. L.
,
Zhang
,
W. D.
,
Chen
,
J. T.
,
Zhou
,
H. H.
, and
Zhang
,
X.
,
2012
, “
Improvement of the High-Temperature, High-Voltage Cycling Performance of LiNi0.5Co0.2Mn0.3O2 Cathode With TiO2 Coating
,”
J. Alloy Compd.
,
543
, pp.
181
188
. 10.1016/j.jallcom.2012.07.074
2.
Guo
,
Z. J.
, and
Chen
,
Z. L.
,
2015
, “
High-Temperature Capacity Fading Mechanism for LiFePO4/Graphite Soft-Packed Cell Without Fe Dissolution
,”
J. Electroanal. Chem.
,
754
, pp.
148
153
. 10.1016/j.jelechem.2015.07.009
3.
Ping
,
P.
,
Wang
,
Q. S.
,
Chung
,
Y. M.
, and
Wen
,
J.
,
2017
, “
Modelling Electro-Thermal Response of Lithium-Ion Batteries From Normal to Abuse Conditions
,”
Appl. Energy
,
205
, pp.
1327
1344
. 10.1016/j.apenergy.2017.08.073
4.
Li
,
W.
,
Chen
,
S. Q.
,
Peng
,
X. B.
,
Xia
,
M.
,
Gao
,
L.
,
Garg
,
A.
,
Chen
,
S.
,
Peng
,
X.
,
Xiao
,
M.
,
Gao
,
L.
,
Garg
,
A.
, and
Bao
,
N.
,
2019
, “
A Comprehensive Approach for the Clustering of Similar-Performance Cells for the Design of a Lithium-Ion Battery Module for Electric Vehicles
,”
Eng.
,
5
(
4
), pp.
795
802
. 10.1016/j.eng.2019.07.005
5.
Rao
,
Z. H.
, and
Wang
,
S. F.
,
2011
, “
A Review of Power Battery Thermal Energy Management
,”
Renewable Sustainable Energy Rev.
,
15
(
9
), pp.
4554
4571
. 10.1016/j.rser.2011.07.096
6.
Jeon
,
D. H.
, and
Baek
,
S. M.
,
2011
, “
Thermal Modeling of Cylindrical Lithium Ion Battery During Discharge Cycle
,”
Energy Convers Manage.
,
52
(
8–9
), pp.
2973
2981
. 10.1016/j.enconman.2011.04.013
7.
Jarrett
,
A.
, and
Kim
,
I. Y.
,
2011
, “
Design Optimization of Electric Vehicle Battery Cooling Plates for Thermal Performance
,”
J. Power Sources
,
196
(
23
), pp.
10359
10368
. 10.1016/j.jpowsour.2011.06.090
8.
Smith
,
J.
,
Hinterberger
,
M.
,
Hable
,
P.
, and
Koehler
,
J.
,
2014
, “
Simulative Method for Determining the Optimal Operating Conditions for a Cooling Plate for Lithium-Ion Battery Cell Modules
,”
J. Power Sources
,
267
, pp.
784
792
. 10.1016/j.jpowsour.2014.06.001
9.
Huo
,
Y. T.
,
Rao
,
Z. H.
,
Liu
,
X. J.
, and
Zhao
,
J. T.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energy Convers Manage.
,
89
, pp.
387
395
. 10.1016/j.enconman.2014.10.015
10.
Li
,
W.
,
Peng
,
X. B.
,
Xiao
,
M.
,
Garg
,
A.
, and
Gao
,
L.
,
2019
, “
Multi-Objective Design Optimization for Mini-Channel Cooling Battery Thermal Management System in an Electric Vehicle
,”
Int. J. Energy Res.
,
43
(
8
), pp.
3668
3680
. 10.1002/er.4518
11.
Kizilel
,
R.
,
Lateef
,
A.
,
Sabbah
,
R.
,
Farid
,
M. M.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2008
, “
Passive Control of Temperature Excursion and Uniformity in High-Energy Li-Ion Battery Packs at High Current and Ambient Temperature
,”
J. Power Sources
,
183
(
1
), pp.
370
375
. 10.1016/j.jpowsour.2008.04.050
12.
Kizilel
,
R.
,
Sabbah
,
R.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2009
, “
An Alternative Cooling System to Enhance the Safety of Li-Ion Battery Packs
,”
J. Power Sources
,
194
(
2
), pp.
1105
1112
. 10.1016/j.jpowsour.2009.06.074
13.
Al-Hallaj
,
S.
, and
Selman
,
J. R.
,
2002
, “
Thermal Modeling of Secondary Lithium Batteries for Electric Vehicle/Hybrid Electric Vehicle Applications
,”
J. Power Sources
,
110
(
2
), pp.
341
348
. 10.1016/S0378-7753(02)00196-9
14.
Javani
,
N.
,
Dincer
,
I.
,
Naterer
,
G. F.
, and
Rohrauer
,
G. L.
,
2014
, “
Modeling of Passive Thermal Management for Electric Vehicle Battery Packs With PCM Between Cells
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
307
316
. 10.1016/j.applthermaleng.2014.07.037
15.
Rao
,
Z. H.
,
Wang
,
S. F.
,
Wu
,
M. C.
,
Lin
,
Z. R.
, and
Li
,
F. H.
,
2013
, “
Experimental Investigation on Thermal Management of Electric Vehicle Battery With Heat Pipe
,”
Energy Convers Manage.
,
65
, pp.
92
97
. 10.1016/j.enconman.2012.08.014
16.
Tran
,
T. H.
,
Harmand
,
S.
, and
Sahut
,
B.
,
2014
, “
Experimental Investigation on Heat Pipe Cooling for Hybrid Electric Vehicle and Electric Vehicle Lithium-Ion Battery
,”
J. Power Sources
,
265
, pp.
262
272
. 10.1016/j.jpowsour.2014.04.130
17.
Zhao
,
R.
,
Gu
,
J. J.
, and
Liu
,
J.
,
2015
, “
An Experimental Study of Heat Pipe Thermal Management System With Wet Cooling Method for Lithium Ion Batteries
,”
J. Power Sources
,
273
, pp.
1089
1097
. 10.1016/j.jpowsour.2014.10.007
18.
Yang
,
N. X.
,
Zhang
,
X. W.
,
Li
,
G. J.
, and
Hua
,
D.
,
2015
, “
Assessment of the Forced Air-Cooling Performance for Cylindrical Lithium-Ion Battery Packs: A Comparative Analysis Between Aligned and Staggered Cell Arrangements
,”
Appl. Therm. Eng.
,
80
, pp.
55
65
. 10.1016/j.applthermaleng.2015.01.049
19.
Liu
,
Z. M.
,
Wang
,
Y. X.
,
Zhang
,
J.
, and
Liu
,
Z. B.
,
2014
, “
Shortcut Computation for the Thermal Management of a Large Air-Cooled Battery Pack
,”
Appl. Therm. Energy
,
66
(
1–2
), pp.
445
452
. 10.1016/j.applthermaleng.2014.02.040
20.
Park
,
H.
,
2013
, “
A Design of Air Flow Configuration for Cooling Lithium Ion Battery in Hybrid Electric Vehicles
,”
J. Power Sources
,
239
, pp.
30
36
. 10.1016/j.jpowsour.2013.03.102
21.
He
,
F.
,
Li
,
X. S.
, and
Ma
,
L.
,
2014
, “
Combined Experimental and Numerical Study of Thermal Management of Battery Module Consisting of Multiple Li-Ion Cells
,”
Int. J. Heat Mass Trans.
,
72
, pp.
622
629
. 10.1016/j.ijheatmasstransfer.2014.01.038
22.
Mahamud
,
R.
, and
Park
,
C.
,
2011
, “
Reciprocating Air Flow for Li-Ion Battery Thermal Management to Improve Temperature Uniformity
,”
J. Power Sources
,
196
(
13
), pp.
5685
5696
. 10.1016/j.jpowsour.2011.02.076
23.
Xun
,
J. Z.
,
Liu
,
R.
, and
Jiao
,
K.
,
2013
, “
Numerical and Analytical Modeling of Lithium Ion Battery Thermal Behaviors With Different Cooling Designs
,”
J. Power Sources
,
233
, pp.
47
61
. 10.1016/j.jpowsour.2013.01.095
24.
Fan
,
L. W.
,
Khodadadi
,
J. M.
, and
Pesaran
,
A. A.
,
2013
, “
A Parametric Study on Thermal Management of an Air-Cooled Lithium-Ion Battery Module for Plug-In Hybrid Electric Vehicles
,”
J. Power Sources
,
238
, pp.
301
312
. 10.1016/j.jpowsour.2013.03.050
25.
Wang
,
T.
,
Tseng
,
K. J.
,
Zhao
,
J. Y.
, and
Wei
,
Z. B.
,
2014
, “
Thermal Investigation of Lithium-Ion Battery Module With Different Cell Arrangement Structures and Forced Air-Cooling Strategies
,”
Appl. Energy
,
134
, pp.
229
238
. 10.1016/j.apenergy.2014.08.013
26.
Choi
,
Y. S.
, and
Kang
,
D. M.
,
2014
, “
Prediction of Thermal Behaviors of an Air-Cooled Lithium-Ion Battery System for Hybrid Electric Vehicles
,”
J. Power Sources
,
270
, pp.
273
280
. 10.1016/j.jpowsour.2014.07.120
27.
Kuvannarat
,
T.
,
Wang
,
C. C.
, and
Wongwises
,
S.
,
2006
, “
Effect of Fin Thickness on the Air-Side Performance of Wavy Fin-and-Tube Heat Exchangers Under Dehumidifying Conditions
,”
Int. J. Heat Mass Trans.
,
49
(
15–16
), pp.
2587
2596
. 10.1016/j.ijheatmasstransfer.2006.01.020
28.
Kim
,
N. H.
,
Ham
,
J. H.
, and
Ch
,
J. P.
,
2008
, “
Experimental Investigation on the Airside Performance of Fin-and-Tube Heat Exchangers Having Herringbone Wave Fins and Proposal of a New Heat Transfer and Pressure Drop Correlation
,”
J. Mech. Sci. Technol.
,
22
(
3
), pp.
545
555
. 10.1007/s12206-007-1116-4
29.
Kim
,
N. H.
,
2016
, “
An Experimental Investigation on the Airside Performance of Fin-and-Tube Heat Exchangers Having Radial Slit Fins Under Wet Condition
,”
J. Therm. Sci. Tech-Jpn.
,
11
(
1
), pp.
1
17
. 10.1299/jtst.2016jtst0005
30.
Wongwises
,
S.
, and
Chokeman
,
Y.
,
2004
, “
Effect of Fin Thickness on Air-Side Performance of Herringbone Wavy Fin-and-Tube Heat Exchangers
,”
Heat Mass Transfer.
,
41
, pp.
147
154
. 10.1007/s00231-004-0507-7
31.
Chokeman
,
Y.
, and
Wongwises
,
S.
,
2005
, “
Effect of Fin Pattern on the Air-Side Performance of Herringbone Wavy Fin-and-Tube Heat Exchangers
,”
Heat Mass Transfer.
,
41
(
7
), pp.
642
650
. 10.1007/s00231-004-0578-5
32.
Wongwises
,
S.
, and
Chokeman
,
Y.
,
2005
, “
Effect of Fin Pitch and Number of Tube Rows on the Air Side Performance of Herringbone Wavy Fin and Tube Heat Exchangers
,”
Energy Convers Manage
,
46
(
13–14
), pp.
2216
2231
. 10.1016/j.enconman.2004.09.011
33.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
12
. 10.1149/1.2113792
34.
Sato
,
N.
,
2001
, “
Thermal Behavior Analysis of Lithium-Ion Batteries for Electric and Hybrid Vehicles
,”
J. Power Sources
,
99
(
1–2
), pp.
70
77
. 10.1016/S0378-7753(01)00478-5
35.
Huang
,
Y.
,
Lu
,
Y.
,
Huang
,
R.
,
Chen
,
J.
,
Chen
,
F.
,
Liu
,
Z.
,
Yu
,
X.
, and
Roskilly
,
A. P.
,
2017
, “
Study on the Thermal Interaction and Heat Dissipation of Cylindrical Lithium-Ion Battery Cells
,”
Energy Procedia
,
142
, pp.
4029
4036
. 10.1016/j.egypro.2017.12.321
36.
Jiang
,
D.
,
Wu
,
K.
,
Chen
,
D.
,
Tu
,
G.
,
Zhou
,
T.
,
Garg
,
A.
, and
Gao
,
L.
,
2019
, “
A Probability and Integrated Learning Based Classification Algorithm for High-Level Human Emotion Recognition Problems
,”
Measurement
,
150
, p.
107049
. 10.1016/j.measurement.2019.107049
37.
Yun
,
L.
,
Sandoval
,
J.
,
Zhang
,
J.
,
Gao
,
L.
,
Garg
,
A.
, and
Wang
,
C. T.
,
2019
, “
Lithium-Ion Battery Packs Formation With Improved Electrochemical Performance for Electric Vehicles: Experimental and Clustering Analysis
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
2
), p.
021011
. 10.1115/1.4042093
38.
Garg
,
A.
,
Ruhatiya
,
C.
,
Cui
,
X.
,
Peng
,
X.
,
Bhalerao
,
Y.
, and
Gao
,
L.
,
2020
, “
A Novel Approach for Enhancing Thermal Performance of Battery Modules Based on Finite Element Modelling and Predictive Modelling Mechanism
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
2
), p.
021103
. 10.1115/1.4045194
39.
Garg
,
A.
,
Wei
,
L.
,
Goyal
,
A.
,
Cui
,
X.
, and
Gao
,
L.
,
2019
, “
Evaluation of Batteries Residual Energy for Battery Pack Recycling: Proposition of Stack Stress-Coupled-AI Approach
,”
J. Energy Storage
,
26
, p.
101001
. 10.1016/j.est.2019.101001
You do not currently have access to this content.