Abstract

The appropriate temperature distribution is indispensable to lithium-ion battery module, especially during the fast charging of the sudden braking process. Thermal properties of each battery cell are obtained from numerical heat generation model and experimental data, and the deviation of thermophysical performance is analyzed by K-means clustering and hierarchical clustering to select battery cells with similar performance. Thermal performance of lithium-ion cells under different charging rates is investigated in experiments and the effects of different mini-channel designs discussed using numerical simulation, maximum temperature, maximum pressure, and temperature standard deviation are compared by both numerical calculation and experimental validation. Two kinds of cooling plates are selected, considering the uniformity of temperature distribution and energy consumption, respectively. All of these cooling plate designs have the ability to constrain the maximum temperature and temperature standard deviation within 306 K and 1.2 K, respectively. Additionally, this thermal management system does not need too much energy consumption. In experimental validation, deviation of maximum temperature is measured to be within 2.2 K and difference of temperature standard deviation is also within tolerance.

References

1.
Skerlos
,
S. J.
, and
Winebrake
,
J. J.
,
2010
, “
Targeting Plug-In Hybrid Electric Vehicle Policies to Increase Social Benefits
,”
Energy Policy
,
38
(
2
), pp.
705
708
. 10.1016/j.enpol.2009.11.014
2.
Adnan
,
N.
,
Nordin
,
S.M.
,
Rahman
,
I.
,
Vasant
,
P.M.
and
Noor
,
A.
, “
A Comprehensive Review on Theoretical Framework-Based Electric Vehicle Consumer Adoption Research
,”
Int. J. Energy Res.
,
41
(
3
) pp.
317
335
. 10.1002/er.3640
3.
Mao
,
C.
,
Ruther
,
R. E.
,
Li
,
J.
,
Du
,
Z.
, and
Belharouak
,
I.
,
2018
, “
Identifying the Limiting Electrode in Lithium Ion Batteries for Extreme Fast Charging
,”
Electrochem. Commun.
,
97
, pp.
37
41
. 10.1016/j.elecom.2018.10.007
4.
Bryden
,
T. S.
,
Hilton
,
G.
,
Cruden
,
A.
, and
Holton
,
T.
,
2018
, “
Electric Vehicle Fast Charging Station Usage and Power Requirements
,”
Energy
,
152
, pp.
322
332
. 10.1016/j.energy.2018.03.149
5.
Wen
,
J.
,
Yan
,
Y.
, and
Chen
,
C.
,
2012
, “
A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions
,”
Mater. Express
,
2
(
3
), pp.
197
212(16)
. 10.1166/mex.2012.1075
6.
Zheng
,
Y.
,
Shi
,
Y.
, and
Huang
,
Y.
,
2019
, “
Optimisation With Adiabatic Interlayers for Liquid-Dominated Cooling System on Fast Charging Battery Packs
,”
Appl. Therm. Eng.
,
147
, pp.
636
646
. 10.1016/j.applthermaleng.2018.10.090
7.
Jarrett
,
A.
, and
Kim
,
I. Y.
,
2011
, “
Design Optimization of Electric Vehicle Battery Cooling Plates for Thermal Performance
,”
J. Power Sources
,
196
(
23
), pp.
10359
10368
. 10.1016/j.jpowsour.2011.06.090
8.
Neubauer
,
J.
, and
Wood
,
E.
,
2014
, “
The Impact of Range Anxiety and Home, Workplace, and Public Charging Infrastructure on Simulated Battery Electric Vehicle Lifetime Utility
,”
J. Power Sources
,
257
, pp.
12
20
. 10.1016/j.jpowsour.2014.01.075
9.
Morrissey
,
P.
,
Weldon
,
P.
, and
O’Mahony
,
M.
,
2016
, “
Future Standard and Fast Charging Infrastructure Planning: An Analysis of Electric Vehicle Charging Behaviour
,”
Energy Policy
,
89
, pp.
257
270
. 10.1016/j.enpol.2015.12.001
10.
Ye
,
Y.
,
Saw
,
L. H.
,
Shi
,
Y.
, and
Tay
,
A. A. O.
,
2015
, “
Numerical Analyses on Optimizing a Heat Pipe Thermal Management System for Lithium-Ion Batteries During Fast Charging
,”
Appl. Therm. Eng.
,
86
, pp.
281
291
. 10.1016/j.applthermaleng.2015.04.066
11.
Lin
,
C.
,
Xu
,
S.
,
Chang
,
G.
, and
Liu
,
J.
,
2015
, “
Experiment and Simulation of a LiFePO4 Battery Pack With a Passive Thermal Management System Using Composite Phase Change Material and Graphite Sheets
,”
J. Power Sources
,
275
, pp.
742
749
. 10.1016/j.jpowsour.2014.11.068
12.
Worwood
,
D.
,
Kellner
,
Q.
,
Wojtala
,
M.
,
Widanage
,
W. D.
,
McGlen
,
R.
,
Greenwood
,
D.
, and
Marco
,
J.
,
2017
, “
A New Approach to the Internal Thermal Management of Cylindrical Battery Cells for Automotive Applications
,”
J. Power Sources
,
346
, pp.
151
166
. 10.1016/j.jpowsour.2017.02.023
13.
Peng
,
X.
,
Ma
,
C.
,
Garg
,
A.
,
Bao
,
N.
, and
Liao
,
X.
,
2019
, “
Thermal Performance Investigation of an Air-Cooled Lithium-Ion Battery Pack Considering the Inconsistency of Battery Cells
,”
Appl. Therm. Eng.
,
153
, pp.
596
603
. 10.1016/j.applthermaleng.2019.03.042
14.
Li
,
W.
,
Xiao
,
M.
,
Peng
,
X.
,
Garg
,
A.
, and
Gao
,
L.
,
2019
, “
A Surrogate Thermal Modeling and Parametric Optimization of Battery Pack With Air Cooling for EVs[J]
,”
Appl. Therm. Eng.
,
147
, pp.
90
100
. 10.1016/j.applthermaleng.2018.10.060
15.
Saw
,
L. H.
,
Ye
,
Y.
,
Tay
,
A. A. O.
,
Chong
,
W. T.
,
Kuan
,
S. H.
, and
Yew
,
M. C.
,
2016
, “
Computational Fluid Dynamic and Thermal Analysis of Lithium-Ion Battery Pack With Air Cooling
,”
Appl. Energy
,
177
, pp.
783
792
. 10.1016/j.apenergy.2016.05.122
16.
Parsons
,
K. K.
, and
Mackin
,
T. J.
,
2017
, “
Design and Simulation of Passive Thermal Management System for Lithium-Ion Battery Packs on an Unmanned Ground Vehicle
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
1
), p.
011012
. 10.1115/1.4034904
17.
Zhu
,
C.
,
Li
,
X.
,
Song
,
L.
, and
Xiang
,
L.
,
2013
, “
Development of a Theoretically Based Thermal Model for Lithium Ion Battery Pack
,”
J. Power Sources
,
223
, pp.
155
164
. 10.1016/j.jpowsour.2012.09.035
18.
Xu
,
M.
,
Wang
,
R.
,
Reichman
,
B.
, and
Wang
,
X.
,
2018
, “
Modeling the Effect of two-Stage Fast Charging Protocol on Thermal Behavior and Charging Energy Efficiency of Lithium-Ion Batteries
,”
J. Energy Storage
,
20
, pp.
298
309
. 10.1016/j.est.2018.09.004
19.
Chen
,
S.
,
Peng
,
X.
,
Bao
,
N.
, and
Garg
,
A.
,
2019
, “
A Comprehensive Analysis and Optimization Process for an Integrated Liquid Cooling Plate for a Prismatic Lithium-Ion Battery Module
,”
Appl. Therm. Eng.
,
156
, pp.
324
339
. 10.1016/j.applthermaleng.2019.04.089
20.
Bandhauer
,
T.
,
Garimella
,
S.
, and
Fuller
,
T. F.
,
2015
, “
Electrochemical-Thermal Modeling to Evaluate Battery Thermal Management Strategies I Side Cooling
,”
J. Electrochem. Soc.
,
162
(
1
), pp.
A125
A136
. 10.1149/2.0571501jes
21.
Chen
,
D.
,
Jiang
,
J.
,
Kim
,
G.-H.
,
Yang
,
C.
, and
Pesaran
,
A.
,
2016
, “
Comparison of Different Cooling Methods for Lithium Ion Battery Cells
,”
Appl. Therm. Eng.
,
94
, pp.
846
854
. 10.1016/j.applthermaleng.2015.10.015
22.
Wang
,
Q.
,
Jiang
,
B.
,
Li
,
B.
, and
Yan
,
Y.
,
2016
, “
A Critical Review of Thermal Management Models and Solutions of Lithium-Ion Batteries for the Development of Pure Electric Vehicles
,”
Renewable Sustainable Energy Rev.
,
64
, pp.
106
128
. 10.1016/j.rser.2016.05.033
23.
Li
,
J.
,
Huang
,
J.
, and
Cao
,
M.
,
2018
, “
Properties Enhancement of Phase-Change Materials via Silica and Al Honeycomb Panels for the Thermal Management of LiFeO4 Batteries
,”
Appl. Therm. Eng.
,
131
, pp.
660
668
. 10.1016/j.applthermaleng.2017.12.023
24.
Zhao
,
J.
,
Lv
,
P.
, and
Rao
,
Z.
,
2017
, “
Experimental Study on the Thermal Management Performance of Phase Change Material Coupled With Heat Pipe for Cylindrical Power Battery Pack
,”
Exp. Therm. Fluid. Sci.
,
82
, pp.
182
188
. 10.1016/j.expthermflusci.2016.11.017
25.
Song
,
W.
,
Bai
,
F.
,
Chen
,
M.
,
Lin
,
S.
,
Feng
,
Z.
, and
Li
,
Y.
,
2018
, “
Thermal Management of Standby Battery for Outdoor Base Station Based on the Semiconductor Thermoelectric Device and Phase Change Materials
,”
Appl. Therm. Eng.
,
137
, pp.
203
217
. 10.1016/j.applthermaleng.2018.03.072
26.
Wilke
,
S.
,
Schweitzer
,
B.
,
Khateeb
,
S.
, and
Al-Hallaj
,
S.
,
2017
, “
Preventing Thermal Runaway Propagation in Lithium Ion Battery Packs Using a Phase Change Composite Material: An Experimental Study
,”
J. Power Sources
,
340
, pp.
51
59
. 10.1016/j.jpowsour.2016.11.018
27.
Wang
,
Z.
,
Zhang
,
H.
, and
Xia
,
X.
,
2017
, “
Experimental Investigation on the Thermal Behavior of Cylindrical Battery With Composite Paraffin and Fin Structure
,”
Int. J. Heat Mass Transfer
,
109
, pp.
958
970
. 10.1016/j.ijheatmasstransfer.2017.02.057
28.
Panchal
,
S.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2016
, “
Thermal Modeling and Validation of Temperature Distributions in a Prismatic Lithium-Ion Battery at Different Discharge Rates and Varying Boundary Conditions
,”
Appl. Therm. Eng.
,
96
, pp.
190
199
. 10.1016/j.applthermaleng.2015.11.019
29.
Zhang
,
T.
,
Gao
,
Q.
,
Wang
,
G.
,
Gu
,
Y.
,
Wang
,
Y.
,
Bao
,
W.
, and
Zhang
,
D.
,
2017
, “
Investigation on the Promotion of Temperature Uniformity for the Designed Battery Pack With Liquid Flow in Cooling Process
,”
Appl. Therm. Eng.
,
116
, pp.
655
662
. 10.1016/j.applthermaleng.2017.01.069
30.
Li
,
K.
,
Yan
,
J.
,
Chen
,
H.
, and
Wang
,
Q.
,
2018
, “
Water Cooling Based Strategy for Lithium Ion Battery Pack Dynamic Cycling for Thermal Management System
,”
Appl. Therm. Eng.
,
132
, pp.
575
585
. 10.1016/j.applthermaleng.2017.12.131
31.
Lan
,
C.
,
Xu
,
J.
,
Qiao
,
Y.
, and
Ma
,
Y.
,
2016
, “
Thermal Management for High Power Lithium-Ion Battery by Minichannel Aluminum Tubes
,”
Appl. Therm. Eng.
,
101
, pp.
284
292
. 10.1016/j.applthermaleng.2016.02.070
32.
Xu
,
J.
,
Lan
,
C.
,
Qiao
,
Y.
, and
Ma
,
Y.
,
2017
, “
Prevent Thermal Runaway of Lithium-Ion Batteries With Minichannel Cooling
,”
Appl. Therm. Eng.
,
110
, pp.
883
890
. 10.1016/j.applthermaleng.2016.08.151
33.
Yang
,
L.
, and
Ribberink
,
H.
,
2019
, “
Investigation of the Potential to Improve DC Fast Charging Station Economics by Integrating Photovoltaic Power Generation and/or Local Battery Energy Storage System
,”
Energy
,
167
, pp.
246
259
. 10.1016/j.energy.2018.10.147
34.
Sturm
,
J.
,
Rheinfeld
,
A.
,
Zilberman
,
I.
,
Spingler
,
F. B.
,
Kosch
,
S.
,
Frie
,
F.
, and
Jossen
,
A.
,
2019
, “
Modeling and Simulation of Inhomogeneities in a 18650 Nickel-Rich, Silicon-Graphite Lithium-Ion Cell During Fast Charging
,”
J. Power Sources
,
412
, pp.
204
223
. 10.1016/j.jpowsour.2018.11.043
35.
Bernadi
,
D.
,
Newman
,
B.
, and
Pawlikowski
,
1985
, “
A General Energy-Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
12
.
36.
Hung
,
C.-H.
,
Chiou
,
H.-M.
, and
Yang
,
W.-N.
,
2013
, “
Candidate Groups Search for K-Harmonic Means Data Clustering
,”
Appl. Math. Modell.
,
37
(
24
), pp.
10123
10128
. 10.1016/j.apm.2013.05.052
37.
Li
,
W.
,
Chen
,
S.
,
Peng
,
X.
,
Xiao
,
M.
,
Gao
,
L.
,
Garg
,
A.
, and
Bao
,
N.
,
2019
, “
A Comprehensive Approach for the Clustering of Similar-Performance Cells for the Design of a Lithium-Ion Battery Module for Electric Vehicles
,”
Engineering
,
5
(
4
), pp.
795
802
. 10.1016/j.eng.2019.07.005
38.
Huo
,
Y.
,
Rao
,
Z.
,
Liu
,
X.
, and
Zhao
,
J.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energy Convers. Manage.
,
89
, pp.
387
395
. 10.1016/j.enconman.2014.10.015
39.
Jarrett
,
A.
, and
Kim
,
I. Y.
,
2014
, “
Influence of Operating Conditions on the Optimum Design of Electric Vehicle Battery Cooling Plates
,”
J. Power Sources
,
245
, pp.
644
655
. 10.1016/j.jpowsour.2013.06.114
40.
Zhao
,
C.
,
Sousa
,
A. C. M.
, and
Jiang
,
F.
,
2019
, “
Minimization of Thermal Non-Uniformity in Lithium-Ion Battery Pack Cooled by Channeled Liquid Flow
,”
Int. J. Heat Mass Transfer
,
129
, pp.
660
670
. 10.1016/j.ijheatmasstransfer.2018.10.017
41.
Shang
,
Z.
,
Qi
,
H.
,
Liu
,
X.
,
Ouyang
,
C.
, and
Wang
,
Y.
,
2019
, “
Structural Optimization of Lithium-Ion Battery for Improving Thermal Performance Based on a Liquid Cooling System
,”
Int. J. Heat Mass Transfer
,
130
, pp.
33
41
. 10.1016/j.ijheatmasstransfer.2018.10.074
42.
Ruhatiya
,
C.
,
Singh
,
S.
,
Goyal
,
A.
,
Niu
,
X.
,
Nguyen
,
T. N. H.
,
Le
,
M. L. P.
, and
Gao
,
L.
,
2019
, “
Electrochemical Performance Enhancement of Sodium-Ion Batteries Fabricated With NaNi1/3Mn1/3Co1/3O2 Cathodes Using Support Vector Regression-Simplex Algorithm Approach
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
1
), pp.
1
20
. 10.1115/1.4044358
43.
Jiang
,
D.
,
Wu
,
K.
,
Chen
,
D.
,
Tu
,
G.
,
Zhou
,
T.
,
Garg
,
A.
, and
Gao
,
L.
,
2019
, “
A Probability and Integrated Learning Based Classification Algorithm for High-Level Human Emotion Recognition Problems
,”
Measurement
,
150
, p.
107049
. 10.1016/j.measurement.2019.107049
44.
Yun
,
L.
,
Sandoval
,
J.
,
Zhang
,
J.
, and
Wang
,
C. T.
,
2019
, “
Lithium-Ion Battery Packs Formation With Improved Electrochemical Performance for Electric Vehicles: Experimental and Clustering Analysis
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
2
), p.
021011
. 10.1115/1.4042093
You do not currently have access to this content.