Abstract

In this study, a lithium-ion soft-pack battery used in an electric vehicle was taken as the research object. Based on the actual working condition of the traction battery, the regularity of the evolution of the overcharge thermal runaway experiment of the sample was deeply analyzed by taking the charging rate and the ambient temperature as variables. The results showed that the larger the overcharge current was and the higher the ambient temperature was, the lower the overcharge thermal stability of the battery was. Furthermore, based on the concept of the introduction of battery energy during charging, by analyzing the total amount of energy input and the rate of energy input, a unified index was established to measure the change of the battery overcharging stability under different experimental conditions.

References

1.
Li
,
M.
,
Lu
,
J.
,
Chen
,
Z.
, and
Amine
,
K.
,
2018
, “
30 Years of Lithium-Ion Batteries
,”
Adv. Mater.
,
30
(
33
), p.
1800561
. 10.1002/adma.201800561
2.
Sureth
,
A.
,
Moll
,
V.
,
Nachtwei
,
J.
, and
Franke
,
T.
,
2019
, “
The Golden Rules of Ecodriving? The Effect of Providing Hybrid Electric Vehicle (HEV) Drivers With a Newly Developed Set of Ecodriving-Tips
,”
Transp. Res. Part F: Traffic Psychol. Behav.
,
64
(
7
), pp.
565
581
. 10.1016/j.trf.2019.07.003
3.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Re-chargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
. 10.1038/35104644
4.
Liu
,
L.
,
Li
,
M.
,
Chu
,
L.
,
Jiang
,
B.
,
Lin
,
R.
,
Zhu
,
X.
, and
Cao
,
G.
,
2020
, “
Layered Ternary Metal Oxides: Performance Degradation Mechanisms as Cathodes, and Design Strategies for High-Performance Batteries
,”
Prog. Mater. Sci.
,
111
(
6
), p.
100655
. 10.1016/j.pmatsci.2020.100655
5.
Choi
,
K. H.
,
Liu
,
X.
,
Ding
,
X.
, and
Li
,
Q.
,
2020
, “
Design Strategies for Development of Nickel-Rich Ternary Lithium-Ion Battery
,”
Ionics
,
6
(
26
), pp.
1
18
. 10.1007/s11581-019-03429-z
6.
Chakraborty
,
A.
,
Kunnikuruvan
,
S.
,
Kumar
,
S.
,
Markovsky
,
B.
,
Aurbach
,
D.
,
Dixit
,
M.
, and
Major
,
D. T.
,
2020
, “
Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on LiNi1–x–yCoxMnyO2 and LiNi1–x–yCoxAlyO2
,”
Chem. Mater.
,
32
(
3
), pp.
915
952
. 10.1021/acs.chemmater.9b04066
7.
Min
,
K.
,
Kim
,
K.
,
Jung
,
C.
,
Seo
,
S.-W.
,
Song
,
Y. Y.
,
Lee
,
H. S.
,
Shin
,
J.
, and
Cho
,
E.
,
2016
, “
A Comparative Study of Structural Changes in Lithium Nickel Cobalt Manganese Oxide as a Function of Ni Content During Delithiation Process
,”
J. Power Sources
,
315
(
5
), pp.
111
119
. 10.1016/j.jpowsour.2016.03.017
8.
Nitta
,
N.
,
Wu
,
F.
,
Lee
,
J. T.
, and
Yushin
,
G.
,
2015
, “
Li-Ion Battery Materials: Present and Future
,”
Mater. Today
,
18
(
5
), pp.
252
264
. 10.1016/j.mattod.2014.10.040
9.
Zhang
,
J.
,
Zhang
,
L.
,
Sun
,
F.
, and
Wang
,
Z.
,
2018
, “
An Overview on Thermal Safety Issues of Lithium-Ion Batteries for Electric Vehicle Application
,”
IEEE Access
,
6
(
99
), pp.
23848
23863
. 10.1109/ACCESS.2018.2824838
10.
Liu
,
J.
,
Duan
,
Q.
,
Ma
,
M.
,
Zhao
,
C.
,
Sun
,
J.
, and
Wang
,
Q.
,
2020
, “
Aging Mechanisms and Thermal Stability of Aged Commercial 18650 Lithium Ion Battery Induced by Slight Overcharging Cycling
,”
J. Power Sources
,
445
(
1
), p.
227263
. 10.1016/j.jpowsour.2019.227263
11.
Hu
,
E.
,
Bak
,
S. M.
,
Senanayake
,
S. D.
,
Yang
,
X.-Q.
,
Nam
,
K.-W.
,
Zhang
,
L.
, and
Shao
,
M.
,
2015
, “
Thermal Stability in the Blended Lithium Manganese Oxide–Lithium Nickel Cobalt Manganese Oxide Cathode Materials: An In Situ Time-Resolved X-Ray Diffraction and Mass Spectroscopy Study
,”
J. Power Sources
,
277
(
3
), pp.
193
197
. 10.1016/j.jpowsour.2014.12.015
12.
Ye
,
J.
,
Chen
,
H.
,
Wang
,
Q.
,
Huang
,
P.
,
Sun
,
J.
, and
Lo
,
S.
,
2016
, “
Thermal Behavior and Failure Mechanism of Lithium Ion Cells During Overcharge Under Adiabatic Conditions
,”
Appl. Energy
,
182
(
11
), pp.
464
474
. 10.1016/j.apenergy.2016.08.124
13.
Yuan
,
Q.
,
Zhao
,
F.
,
Wang
,
W.
,
Zhao
,
Y.
,
Liang
,
Z.
, and
Yan
,
D.
,
2015
, “
Overcharge Failure Investigation of Lithium-Ion Batteries
,”
Electrochim. Acta
,
178
(
10
), pp.
682
688
. 10.1016/j.electacta.2015.07.147
14.
Ouyang
,
M.
,
Ren
,
D.
,
Lu
,
L.
,
Li
,
J.
,
Feng
,
X.
,
Han
,
X.
, and
Liu
,
G.
,
2015
, “
Overcharge-Induced Capacity Fading Analysis for Large Format Lithium-Ion Batteries With LiyNi1/3Co1/3Mn1/3O2 + LiyMn2O4 Composite Cathode
,”
J. Power Sources
,
279
(
4
), pp.
626
635
. 10.1016/j.jpowsour.2015.01.051
15.
Zhang
,
S. S.
,
2020
, “
Problems and Their Origins of Ni-Rich Layered Oxide Cathode Materials
,”
Energy Storage Mater.
,
24
(
1
), pp.
247
254
. 10.1016/j.ensm.2019.08.013
16.
Zeng
,
G.
,
Bai
,
Z.
,
Huang
,
P.
, and
Wang
,
Q.
,
2020
, “
Thermal Safety Study of Li-Ion Batteries Under Limited Overcharge Abuse Based on Coupled Electrochemical-Thermal Model
,”
Int. J. Energy Res.
,
44
(
5
), pp.
3607
3625
. 10.1002/er.5125
17.
Belov
,
D.
, and
Yang
,
M.-H.
,
2008
, “
Failure Mechanism of Li-Ion Battery at Overcharge Conditions
,”
J. Solid State Electrochem.
,
12
(
7–8
), pp.
885
894
. 10.1007/s10008-007-0449-3
18.
Ouyang
,
D.
,
Liu
,
J.
,
Chen
,
M.
,
Weng
,
J.
, and
Wang
,
J.
,
2018
, “
An Experimental Study on the Thermal Failure Propagation in Lithium-Ion Battery Pack
,”
J. Electrochem. Soc.
,
165
(
10
), pp.
A2184
A2193
. 10.1149/2.0721810jes
19.
Jung
,
S.
,
Gwon
,
H.
,
Hong
,
J.
,
Park
,
K.
,
Seo
,
D.
,
Kim
,
H.
,
Hyun
,
J.
,
Yang
,
W.
, and
Kang
,
K.
,
2014
, “
Understanding the Degradation Mechanisms of LiNi0. 5Co0. 2Mn0. 3O2 Cathode Material in Lithium Ion Batteries
,”
Adv. Energy Mater.
,
4
(
1
), p.
1300787
. 10.1002/aenm.201300787
20.
Baird
,
A. R.
,
Archibald
,
E. J.
,
Marr
,
K. C.
, and
Ezekoye
,
O. A.
,
2020
, “
Explosion Hazards From Lithium-Ion Battery Vent Gas
,”
J. Power Sources
,
446
(
1
), p.
227257
. 10.1016/j.jpowsour.2019.227257
21.
Wang
,
Q.
,
Mao
,
B.
,
Stoliarov
,
S. I.
, and
Sun
,
J.
,
2019
, “
A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies
,”
Prog. Energy Combust. Sci.
,
73
(
7
), pp.
95
131
. 10.1016/j.pecs.2019.03.002
22.
Larsson
,
F.
,
Bertilsson
,
S.
,
Furlani
,
M.
,
Albinsson
,
I.
, and
Mellander
,
B.-E.
,
2018
, “
Gas Explosions and Thermal Runaways During External Heating Abuse of Commercial Lithium-Ion Graphite-LiCoO2 Cells at Different Levels of Ageing
,”
J. Power Sources
,
373
(
1
), pp.
220
231
. 10.1016/j.jpowsour.2017.10.085
23.
Finegan
,
D. P.
,
Scheel
,
M.
,
Robinson
,
J. B.
,
Tjaden
,
B.
,
Hunt
,
I.
,
Mason
,
T. J.
,
Millichamp
,
J.
,
Di Michiel
,
M.
,
Offer
,
G. J.
,
Hinds
,
G.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2015
, “
In-operando High-Speed Tomography of Lithium-Ion Batteries During Thermal Runaway
,”
Nat. Commun.
,
6
(
1
), pp.
1
10
. 10.1038/ncomms7924
24.
Li
,
X.
, and
Wang
,
Z.
,
2018
, “
A Novel Fault Diagnosis Method for Lithium-Ion Battery Packs of Electric Vehicles
,”
Measurement
,
116
(
2
), pp.
402
411
. 10.1016/j.measurement.2017.11.034
25.
Finegan
,
D. P.
,
Darcy
,
E.
,
Keyser
,
M.
,
Tjaden
,
B.
,
Heenan
,
T. M.
,
Jervis
,
R.
,
Bailey
,
J. J.
,
Vo
,
N. T.
,
Magdysyuk
,
O. V.
,
Drakopoulos
,
M.
,
Di Michiel
,
M.
,
Rack
,
A.
,
Hinds
,
G.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2018
, “
Identifying the Cause of Rupture of Li-Ion Batteries During Thermal Runaway
,”
Adv. Sci.
,
5
(
1
), p.
1700369
. 10.1002/advs.201700369
26.
Zhu
,
X.
,
Wang
,
Z.
,
Wang
,
Y.
,
Wang
,
H.
,
Wang
,
C.
,
Tong
,
L.
, and
Yi
,
M.
,
2019
, “
Overcharge Investigation of Large Format Lithium-Ion Pouch Cells With Li (Ni0.6Co0.2Mn0.2) O2 Cathode for Electric Vehicles: Thermal Runaway Features and Safety Management Method
,”
Energy
,
169
(
2
), pp.
868
880
. 10.1016/j.energy.2018.12.041
27.
Ouyang
,
D.
,
Weng
,
J.
,
Liu
,
J.
,
Chen
,
M.
, and
Wang
,
J.
,
2019
, “
Influence of Current Rate on the Degradation Behavior of Lithium-Ion Battery Under Overcharge Condition
,”
J. Electrochem. Soc.
,
166
(
12
), pp.
A2697
A2706
. 10.1149/2.1441912jes
28.
Liang
,
C.
,
Jiang
,
L.
,
Ye
,
S.
,
Sun
,
J.
, and
Wang
,
Q.
,
2019
, “
Comprehensive Analysis on Dynamic Heat Generation of LiNi1/3Co1/3Mn1/3O2 Coin Cell Under Overcharge
,”
J. Electrochem. Soc.
,
166
(
14
), pp.
A3369
A3376
. 10.1149/2.0861914jes
29.
Li
,
J.
,
Sun
,
D.
,
Jin
,
X.
,
Shi
,
W.
, and
Sun
,
C.
,
2019
, “
Lithium-Ion Battery Overcharging Thermal Characteristics Analysis and an Impedance-Based Electro-Thermal Coupled Model Simulation
,”
Appl. Energy
,
254
(
11
), p.
113574
. 10.1016/j.apenergy.2019.113574
30.
Li
,
H.
,
Duan
,
Q.
,
Zhao
,
C.
,
Huang
,
Z.
, and
Wang
,
Q.
,
2019
, “
Experimental Investigation on the Thermal Runaway and Its Propagation in the Large Format Battery Module With Li (Ni1/3Co1/3Mn1/3) O2 as Cathode
,”
J. Hazard. Mater.
,
375
(
8
), pp.
241
254
. 10.1016/j.jhazmat.2019.03.116
31.
Sharma
,
N.
, and
Peterson
,
V. K.
,
2013
, “
Overcharging a Lithium-Ion Battery: Effect on the LixC6 Negative Electrode Determined by In Situ Neutron Diffraction
,”
J. Power Sources
,
244
(
2
), pp.
695
701
. 10.1016/j.jpowsour.2012.12.019
32.
Larsson
,
F.
, and
Mellander
,
B.-E.
,
2014
, “
Abuse by External Heating, Overcharge and Short Circuiting of Commercial Lithium-Ion Battery Cells
,”
J. Electrochem. Soc.
,
161
(
10
), pp.
A1611
A1617
. 10.1149/2.0311410jes
33.
Ouyang
,
D.
,
Chen
,
M.
,
Weng
,
J.
, and
Wang
,
J.
,
2020
, “
A Comparative Study on the Degradation Behaviors of Overcharged Lithium-Ion Batteries Under Different Ambient Temperatures
,”
Int. J. Energy Res.
,
44
(
2
), pp.
1078
1088
. 10.1002/er.4996
34.
Yuan
,
C.
,
Gao
,
X.
,
Wong
,
H. K.
,
Feng
,
B.
, and
Xu
,
J.
,
2019
, “
A Multiphysics Computational Framework for Cylindrical Battery Behavior Upon Mechanical Loading Based on LS-DYNA
,”
J. Electrochem. Soc.
,
166
(
6
), pp.
A1160
A1169
. 10.1149/2.1071906jes
You do not currently have access to this content.