Abstract

Chemical composition–moisture sensitivity relationship of LiNixMnyCo1−x−yO2 (NMC) cathode materials was investigated by exploring crystal structures, surface properties, and electrochemical performance behaviors of various commercial NMC powders: LiNi1/3Mn1/3Co1/3O2 (NMC111), LiNi0.5Mn0.3Co0.2O2 (NMC532), LiNi0.6Mn0.2Co0.2O2 (NMC622), and LiNi0.8Mn0.1Co0.1O2 (NMC811). The NMC powders were stored in different moisture conditions: moisture-free, humidified air, or immersed in water. Rietveld refinement analysis of X-ray diffraction (XRD) data and scanning electron microscopy (SEM) were used to characterize the crystal structure changes and the evolution of particle surfaces morphologies. The effect of moisture contamination on the electrochemical properties of NMC cathodes was studied by galvanostatic cycling and electrochemical impedance spectroscopy (EIS). The moisture contamination resulted in either structural disorder or unwanted surficial deposition products, which increased a charge-transfer impedance and consequent performance degradation of battery cells. The results showed that NMC’s moisture vulnerability increased with Ni content (x) despite protective coatings on commercial particles, which stressed the necessity of alternative surface passivation strategies of Ni-rich NMC for broad applications such as electric vehicles and electrified aircraft propulsion.

References

1.
Mizushima
,
K.
,
Jones
,
P. C.
,
Wiseman
,
P. J.
, and
Goodenough
,
J. B.
,
1980
, “
LixCoO2 (0 < x < −1): A New Cathode Material for Batteries of High Energy Density
,”
Mater. Res. Bull.
,
15
(
6
), pp.
783
789
.
2.
Ammundsen
,
B.
, and
Paulsen
,
J.
,
2001
, “
Novel Lithium-Ion Cathode Materials Based on Layered Manganese Oxides
,”
Adv. Mater.
,
13
(
12–13
), pp.
943
956
.
3.
Schmuch
,
R.
,
Wagner
,
R.
,
Hörpel
,
G.
,
Placke
,
T.
, and
Winter
,
M.
,
2018
, “
Performance and Cost of Materials for Lithium-Based Rechargeable Automotive Batteries
,”
Nat. Energy
,
3
(
4
), pp.
267
278
.
4.
Myung
,
S.-T.
,
Maglia
,
F.
,
Park
,
K.-J.
,
Yoon
,
C. S.
,
Lamp
,
P.
,
Kim
,
S.-J.
, and
Sun
,
Y.-K.
,
2017
, “
Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives
,”
ACS Energy Lett.
,
2
(
1
), pp.
196
223
.
5.
Noh
,
H.-J.
,
Youn
,
S.
,
Yoon
,
C. S.
, and
Sun
,
Y.-K.
,
2013
, “
Comparison of the Structural and Electrochemical Properties of Layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) Cathode Material for Lithium-Ion Batteries
,”
J. Power Sources
,
233
, pp.
121
130
.
6.
Madhavi
,
S.
,
Subba Rao
,
G. V.
,
Chowdari
,
B. V. R.
, and
Li
,
S. F. Y.
,
2001
, “
Effect of Aluminium Doping on Cathodic Behaviour of LiNi0.7Co0.3O2
,”
J. Power Sources
,
93
(
1
), pp.
156
162
.
7.
Yoon
,
C. S.
,
Choi
,
M. H.
,
Lim
,
B.-B.
,
Lee
,
E.-J.
, and
Sun
,
Y.-K.
,
2015
, “
Review—High-Capacity Li[Ni1−XCox/2Mnx/2]O2 (x = 0.1, 0.05, 0) Cathodes for Next-Generation Li-Ion Battery
,”
J. Electrochem. Soc.
,
162
(
14
), pp.
A2483
A2489
.
8.
Park
,
J.
,
Park
,
J.
, and
Lee
,
J.
,
2016
, “
Stability of LiNi0.6Mn0.2Co0.2O2 as a Cathode Material for Lithium-Ion Batteries Against Air and Moisture
,”
Bull. Korean Chem. Soc.
,
37
(
3
), pp.
344
348
.
9.
Jung
,
R.
,
Morasch
,
R.
,
Karayaylali
,
P.
,
Phillips
,
K.
,
Maglia
,
F.
,
Stinner
,
C.
,
Shao-Horn
,
Y.
, and
Gasteiger
,
H. A.
,
2018
, “
Effect of Ambient Storage on the Degradation of Ni-Rich Positive Electrode Materials (NMC811) for Li-Ion Batteries
,”
J. Electrochem. Soc.
,
165
(
2
), pp.
A132
A141
.
10.
Sicklinger
,
J.
,
Metzger
,
M.
,
Beyer
,
H.
,
Pritzl
,
D.
, and
Gasteiger
,
H. A.
,
2019
, “
Ambient Storage Derived Surface Contamination of NCM811 and NCM111: Performance Implications and Mitigation Strategies
,”
J. Electrochem. Soc.
,
166
(
12
), pp.
A2322
A2335
.
11.
Friedrich
,
F.
,
Strehle
,
B.
,
Freiberg
,
A. T. S.
,
Kleiner
,
K.
,
Day
,
S. J.
,
Erk
,
C.
,
Piana
,
M.
, and
Gasteiger
,
H. A.
,
2019
, “
Editors’ Choice—Capacity Fading Mechanisms of NCM-811 Cathodes in Lithium-Ion Batteries Studied by X-Ray Diffraction and Other Diagnostics
,”
J. Electrochem. Soc.
,
166
(
15
), pp.
A3760
A3774
.
12.
Manthiram
,
A.
,
Knight
,
J. C.
,
Myung
,
S.-T.
,
Oh
,
S.-M.
, and
Sun
,
Y.-K.
,
2016
, “
Nickel-Rich and Lithium-Rich Layered Oxide Cathodes: Progress and Perspectives
,”
Adv. Energy Mater.
,
6
(
1
), p.
1501010
.
13.
Mijung
,
N.
,
Lee
,
Y.
, and
Cho
,
J.
,
2006
, “
Water Adsorption and Storage Characteristics of Optimized LiCoO2 and LiNi1/3Co1/3Mn1/3O2 Composite Cathode Material for Li-Ion Cells
,”
J. Electrochem. Soc.
,
153
(
5
), p.
A935
.
14.
Toby
,
B. H.
, and
Von Dreele
,
R. B.
,
2013
, “
GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package
,”
J. Appl. Crystallogr.
,
46
(
2
), pp.
544
549
.
15.
Manthiram
,
A.
,
Song
,
B.
, and
Li
,
W.
,
2017
, “
A Perspective on Nickel-Rich Layered Oxide Cathodes for Lithium-Ion Batteries
,”
Energy Storage Mater.
,
6
, pp.
125
139
.
16.
Liu
,
H. S.
,
Zhang
,
Z. R.
,
Gong
,
Z. L.
, and
Yang
,
Y.
,
2004
, “
Origin of Deterioration for LiNiO2 Cathode Material During Storage in Air
,”
Electrochem. Solid-State Lett.
,
7
(
7
), pp.
A190
A193
.
17.
Shizuka
,
K.
,
Kiyohara
,
C.
,
Shima
,
K.
, and
Takeda
,
Y.
,
2007
, “
Effect of CO2 on Layered Li1+zNi1−xyCoxMyO2 (M = Al, Mn) Cathode Materials for Lithium Ion Batteries
,”
J. Power Sources
,
166
(
1
), pp.
233
238
.
18.
Matsumoto
,
K.
,
Kuzuo
,
R.
,
Takeya
,
K.
, and
Yamanaka
,
A.
,
1999
, “
Effects of CO2 in Air on Li Deintercalation From LiNi1−xyCoxAlyO2
,”
J. Power Sources
,
81–82
, pp.
558
561
.
19.
Chen
,
Z.
,
Wang
,
J.
,
Huang
,
J.
,
Fu
,
T.
,
Sun
,
G.
,
Lai
,
S.
,
Zhou
,
R.
,
Li
,
K.
, and
Zhao
,
J.
,
2017
, “
The High-Temperature and High-Humidity Storage Behaviors and Electrochemical Degradation Mechanism of LiNi0.6Co0.2Mn0.2O2 Cathode Material for Lithium Ion Batteries
,”
J. Power Sources
,
363
, pp.
168
176
.
20.
Pritzl
,
D.
,
Teufl
,
T.
,
Freiberg
,
A. T. S.
,
Strehle
,
B.
,
Sicklinger
,
J.
,
Sommer
,
H.
,
Hartmann
,
P.
, and
Gasteiger
,
H. A.
,
2019
, “
Editors’ Choice—Washing of Nickel-Rich Cathode Materials for Lithium-Ion Batteries: Towards a Mechanistic Understanding
,”
J. Electrochem. Soc.
,
166
(
16
), pp.
A4056
A4066
.
21.
Liu
,
W.
,
Oh
,
P.
,
Liu
,
X.
,
Lee
,
M.-J.
,
Cho
,
W.
,
Chae
,
S.
,
Kim
,
Y.
, and
Cho
,
J.
,
2015
, “
Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries
,”
Angew. Chem. Int. Ed.
,
54
(
15
), pp.
4440
4457
.
22.
Choi
,
Y.-M.
,
Pyun
,
S.-I.
, and
Moon
,
S.-I.
,
1996
, “
Effects of Cation Mixing on the Electrochemical Lithium Intercalation Reaction Into Porous Li1−ΔNi1−YCoyO2 Electrodes
,”
Solid State Ionics
,
89
(
1
), pp.
43
52
.
23.
Kim
,
J.
,
Hong
,
Y.
,
Ryu
,
K. S.
,
Kim
,
M. G.
, and
Cho
,
J.
,
2006
, “
Washing Effect of a LiNi0.83Co0.15Al0.02O2 Cathode in Water
,”
Electrochem. Solid-State Lett.
,
9
(
1
), pp.
A19
A23
.
24.
Tian
,
C.
,
Nordlund
,
D.
,
Xin
,
H. L.
,
Xu
,
Y.
,
Liu
,
Y.
,
Sokaras
,
D.
,
Lin
,
F.
, and
Doeff
,
M. M.
,
2018
, “
Depth-Dependent Redox Behavior of LiNi0.6Mn0.2Co0.2O2
,”
J. Electrochem. Soc.
,
165
(
3
), pp.
A696
A704
.
25.
Li
,
W.
,
Reimers
,
J. N.
, and
Dahn
,
J. R.
,
1993
, “
In Situ X-Ray Diffraction and Electrochemical Studies of Li1−xNiO2
,”
Solid State Ionics
,
67
(
1
), pp.
123
130
.
26.
Märker
,
K.
,
Reeves
,
P. J.
,
Xu
,
C.
,
Griffith
,
K. J.
, and
Grey
,
C. P.
,
2019
, “
Evolution of Structure and Lithium Dynamics in LiNi0.8Mn0.1Co0.1O2 (NMC811) Cathodes During Electrochemical Cycling
,”
Chem. Mater.
,
31
(
7
), pp.
2545
2554
.
27.
Ryu
,
H.-H.
,
Park
,
K.-J.
,
Yoon
,
C. S.
, and
Sun
,
Y.-K.
,
2018
, “
Capacity Fading of Ni-Rich Li[NixCoyMn1–xy]O2 (0.6 ≤ x ≤ 0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk or Surface Degradation?
,”
Chem. Mater.
,
30
(
3
), pp.
1155
1163
.
28.
Jung
,
R.
,
Metzger
,
M.
,
Maglia
,
F.
,
Stinner
,
C.
, and
Gasteiger
,
H. A.
,
2017
, “
Oxygen Release and Its Effect on the Cycling Stability of LiNixMnyCozO2 (NMC) Cathode Materials for Li-Ion Batteries
,”
J. Electrochem. Soc.
,
164
(
7
), pp.
A1361
A1377
.
29.
Xu
,
J.
,
Hu
,
E.
,
Nordlund
,
D.
,
Mehta
,
A.
,
Ehrlich
,
S. N.
,
Yang
,
X.-Q.
, and
Tong
,
W.
,
2016
, “
Understanding the Degradation Mechanism of Lithium Nickel Oxide Cathodes for Li-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
8
(
46
), pp.
31677
31683
.
30.
Kang
,
K.
,
Meng
,
Y. S.
,
Bréger
,
J.
,
Grey
,
C. P.
, and
Ceder
,
G.
,
2006
, “
Electrodes With High Power and High Capacity for Rechargeable Lithium Batteries
,”
Science
,
311
(
5763
), pp.
977
980
.
31.
Zhang
,
X.
,
Jiang
,
W. J.
,
Mauger
,
A.
,
Gendron
,
F.
, and
Julien
,
C. M.
,
2010
, “
Minimization of the Cation Mixing in Li1+x(NMC)1−xO2 as Cathode Material
,”
J. Power Sources
,
195
(
5
), pp.
1292
1301
.
32.
Cho
,
D.-H.
,
Jo
,
C.-H.
,
Cho
,
W.
,
Kim
,
Y.-J.
,
Yashiro
,
H.
,
Sun
,
Y.-K.
, and
Myung
,
S.-T.
,
2014
, “
Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni0.7Mn0.3]O2
,”
J. Electrochem. Soc.
,
161
(
6
), pp.
A920
A926
.
33.
Schmidt
,
J. P.
,
Chrobak
,
T.
,
Ender
,
M.
,
Illig
,
J.
,
Klotz
,
D.
, and
Ivers-Tiffée
,
E.
,
2011
, “
Studies on LiFePO4 as Cathode Material Using Impedance Spectroscopy
,”
J. Power Sources
,
196
(
12
), pp.
5342
5348
.
34.
Kim
,
J.-H.
,
Pieczonka
,
N. P. W.
,
Lu
,
P.
,
Liu
,
Z.
,
Qiao
,
R.
,
Yang
,
W.
,
Tessema
,
M. M.
,
Sun
,
Y.-K.
, and
Powell
,
B. R.
,
2015
, “
In Situ Formation of a Cathode-Electrolyte Interface With Enhanced Stability by Titanium Substitution for High Voltage Spinel Lithium-Ion Batteries
,”
Adv. Mater. Interfaces
,
2
(
10
), p.
1500109
.
35.
Pan
,
K.
,
Zou
,
F.
,
Canova
,
M.
,
Zhu
,
Y.
, and
Kim
,
J.-H.
,
2019
, “
Systematic Electrochemical Characterizations of Si and SiO Anodes for High-Capacity Li-Ion Batteries
,”
J. Power Sources
,
413
, pp.
20
28
.
36.
Aurbach
,
D.
,
Levi
,
M. D.
,
Levi
,
E.
,
Teller
,
H.
,
Markovsky
,
B.
,
Salitra
,
G.
,
Heider
,
U.
, and
Heider
,
L.
,
1998
, “
Common Electroanalytical Behavior of Li Intercalation Processes Into Graphite and Transition Metal Oxides
,”
J. Electrochem. Soc.
,
145
(
9
), pp.
3024
3034
.
37.
Shaju
,
K. M.
,
Subba Rao
,
G. V.
, and
Chowdari
,
B. V. R.
,
2003
, “
Electrochemical Kinetic Studies of Li-Ion in O2-Structured Li2/3(Ni1/3Mn2/3)O2 and Li(2/3)+x(Ni1/3Mn2/3)O2 by EIS and GITT
,”
J. Electrochem. Soc.
,
150
(
1
), p.
A1
.
You do not currently have access to this content.