Abstract

State of charge (SOC) of lithium-ion batteries is an indispensable performance indicator in a battery management system (BMS), which is essential to ensure the safe operation of the battery and avoid potential hazards. However, SOC cannot be directly measured by sensors or tools. In order to accurately estimate the SOC, this paper proposes a convolutional neural network based on self-attention mechanism. First, the one-dimensional convolution is introduced to extract features from battery voltage, current, and temperature data. Then, the self-attention mechanism can reduce the dependence on external information and well capture the internal correlation of features extracted by the convolutional layer. Finally, the proposed method is validated on four dynamic driving conditions at five temperatures and compared with the other two deep learning methods. The experimental results show that the proposed method has good accuracy and robustness.

References

1.
Ren
,
X.
,
Liu
,
S.
,
Yu
,
X.
, and
Dong
,
X.
,
2021
, “
A Method for State-of-Charge Estimation of Lithium-Ion Batteries Based on PSO-LSTM
,”
Energy
,
234
, p.
121236
.
2.
Liu
,
D.
,
Zhou
,
J.
,
Pan
,
D.
,
Peng
,
Y.
, and
Peng
,
X.
,
2015
, “
Lithium-Ion Battery Remaining Useful Life Estimation With an Optimized Relevance Vector Machine Algorithm With Incremental Learning
,”
Measurement
,
63
, pp.
143
151
.
3.
Sun
,
D.
,
Yu
,
X.
,
Wang
,
C.
,
Zhang
,
C.
,
Huang
,
R.
,
Zhou
,
Q.
,
Amietszajew
,
T.
, and
Bhagat
,
R.
,
2021
, “
State of Charge Estimation for Lithium-Ion Battery Based on an Intelligent Adaptive Extended Kalman Filter With Improved Noise Estimator
,”
Energy
,
214
, pp.
119025
.
4.
Zhao
,
X.
,
Xuan
,
D.
,
Zhao
,
K.
, and
Li
,
Z.
,
2020
, “
Elman Neural Network Using Ant Colony Optimization Algorithm for Estimating of State of Charge of Lithium-Ion Battery
,”
J. Energy Storage
,
32
, pp.
101789
.
5.
Ali
,
M. U.
,
Zafar
,
A.
,
Nengroo
,
S. H.
,
Hussain
,
S.
,
Alvi
,
M. J.
, and
Kim
,
H.-J.
,
2019
, “
Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation
,”
Energies
,
12
(
3
), pp.
446
.
6.
Hannan
,
M. A.
,
Lipu
,
M. S. H.
,
Hussain
,
A.
,
Ker
,
P. J.
,
Mahlia
,
T. M. I.
,
Mansor
,
M.
,
Ayob
,
Afida
,
Saad
,
Mohamad H.
, and
Dong
,
Z. Y.
,
2020
, “
Toward Enhanced State of Charge Estimation of Lithium-Ion Batteries Using Optimized Machine Learning Techniques
,”
Sci. Rep.
,
10
(
1
), pp.
1
15
.
7.
Zine
,
B.
,
Marouani
,
K.
,
Becherif
,
M.
, and
Yahmedi
,
S.
,
2018
, “
Estimation of Battery SOC for Hybrid Electric Vehicle Using Coulomb Counting Method
,”
Int. J. Emerg. Elec. Power Syst.
,
19
(
2
).
8.
Lee
,
S.
,
Kim
,
J.
,
Lee
,
J.
, and
Cho
,
B. H.
,
2008
, “
State-of-Charge and Capacity Estimation of Lithium-Ion Battery Using a New Open-Circuit Voltage Versus State-of-Charge
,”
J. Power Sources
,
185
(
2
), pp.
1367
1373
.
9.
Hu
,
M.
,
Li
,
Y.
,
Li
,
S.
,
Fu
,
C.
,
Qin
,
D.
, and
Li
,
Z.
,
2018
, “
Lithium-Ion Battery Modeling and Parameter Identification Based on Fractional Theory
,”
Energy
,
165
, pp.
153
163
.
10.
Hu
,
X.
,
Li
,
S.
, and
Peng
,
H.
,
2012
, “
A Comparative Study of Equivalent Circuit Models for Li-Ion Batteries
,”
J. Power Sources
,
198
, pp.
359
367
.
11.
Lai
,
X.
,
Zheng
,
Y.
, and
Sun
,
T.
,
2018
, “
A Comparative Study of Different Equivalent Circuit Models for Estimating State-of-Charge of Lithium-Ion Batteries
,”
Electrochim. Acta
,
259
, pp.
566
577
.
12.
Corno
,
M.
,
Bhatt
,
N.
,
Savaresi
,
S. M.
, and
Verhaegen
,
M.
,
2014
, “
Electrochemical Model-Based State of Charge Estimation for Li-Ion Cells
,”
IEEE Transactions on Control Systems Technology
,
23
(
1
), pp.
117
127
.
13.
Rahman M
,
A.
,
Anwar
,
S.
, and
Izadian
,
A.
,
2016
, “
Electrochemical Model Parameter Identification of a Lithium-Ion Battery Using Particle Swarm Optimization Method
,”
J. Power Sources
,
307
, pp.
86
97
.
14.
He
,
H.
,
Xiong
,
R.
,
Zhang
,
X.
,
Fengchun
,
S.
, and
JinXin
,
F.
,
2011
, “
State-of-Charge Estimation of the Lithium-Ion Battery Using an Adaptive Extended Kalman Filter Based on an Improved Thevenin Model
,”
IEEE Trans. Veh. Technol.
,
60
(
4
), pp.
1461
1469
.
15.
Ye
,
M.
,
Guo
,
H.
,
Xiong
,
R.
, and
Yu
,
Q.
,
2018
, “
A Double-Scale and Adaptive Particle Filter-Based Online Parameter and State of Charge Estimation Method for Lithium-Ion Batteries
,”
Energy
,
144
, pp.
789
799
.
16.
Lin
,
C.
,
Mu
,
H.
,
Xiong
,
R.
, and
Shen
,
W.
,
2016
, “
A Novel Multi-model Probability Battery State of Charge Estimation Approach for Electric Vehicles Using H-Infinity Algorithm
,”
Appl. Energy
,
166
, pp.
76
83
.
17.
Ning
,
B.
,
Cao
,
B.
,
Wang
,
B.
, and
Zou
,
Z.
,
2018
, “
Adaptive Sliding Mode Observers for Lithium-Ion Battery State Estimation Based on Parameters Identified Online
,”
Energy
,
153
, pp.
732
742
.
18.
How
,
D. N. T.
,
Hannan
,
M. A.
,
Lipu
,
M. S. H.
, and
Ker
,
P. J.
,
2019
, “
State of Charge Estimation for Lithium-Ion Batteries Using Model-Based and Data-Driven Methods: A Review
,”
IEEE Access
,
7
, pp.
136116
136136
.
19.
Hannan
,
M. A.
,
Lipu
,
M. S. H.
,
Hussain
,
A.
, and
Ayob
,
A.
,
2018
, “
Neural Network Approach for Estimating State of Charge of Lithium-Ion Battery Using Backtracking Search Algorithm
,”
IEEE Access
,
6
, pp.
10069
10079
.
20.
Li
,
R.
,
Xu
,
S.
,
Li
,
S.
,
Zhou
,
Y.
,
Zhou
,
K.
,
Liu
,
X.
, and
Yao
,
J.
,
2020
, “
State of Charge Prediction Algorithm of Lithium-Ion Battery Based on PSO-SVR Cross Validation
,”
IEEE Access
,
8
, pp.
10234
10242
.
21.
How
,
D. N. T.
,
Hannan
,
M. A.
,
Lipu
,
M. S. H.
,
Sahari
,
K. S. M.
,
Ker
,
P. J.
, and
Muttaqi
,
K. M.
,
2020
, “
State-of-Charge Estimation of Li-Ion Battery in Electric Vehicles: A Deep Neural Network Approach
,”
IEEE Trans. Ind. Appl.
,
56
(
5
), pp.
5565
5574
.
22.
Liu
,
Y.
,
Li
,
J.
,
Zhang
,
G.
,
Hua
,
B.
, and
Xiong
,
N.
,
2021
, “
State of Charge Estimation of Lithium-Ion Batteries Based on Temporal Convolutional Network and Transfer Learning
,”
IEEE Access
,
9
, pp.
34177
34187
.
23.
Chemali
,
E.
,
Kollmeyer
,
P. J.
,
Preindl
,
M.
,
Ahmed
,
R.
, and
Emadi
,
A.
,
2017
, “
Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-Ion Batteries
,”
IEEE Trans. Ind. Electron.
,
65
(
8
), pp.
6730
6739
.
24.
Chen
,
J.
,
Feng
,
X.
,
Jiang
,
L.
, and
Zhu
,
Q.
,
2021
, “
State of Charge Estimation of Lithium-Ion Battery Using Denoising Autoencoder and Gated Recurrent Unit Recurrent Neural Network
,”
Energy
,
227
, pp.
120451
.
25.
Song
,
X.
,
Yang
,
F.
,
Wang
,
D.
, and
Tsui
,
K.-L.
,
2019
, “
Combined CNN-LSTM Network for State-of-Charge Estimation of Lithium-Ion Batteries
,”
IEEE Access
,
7
, pp.
88894
88902
.
26.
LeCun
,
Y.
,
Bottou
,
L.
,
Bengio
,
Y.
, and
Haffner
,
P.
,
1998
, “
Gradient-Based Learning Applied to Document Recognition
,”
Proc. IEEE
,
86
(
11
), pp.
2278
2324
.
27.
Salau
,
A. O.
,
Olowoyo
,
T. D.
, and
Akinola
,
S. O.
,
2020
,
Accent Classification of the Three Major Nigerian Indigenous Languages Using 1d CNN LSTM Network Model//Advances in Computational Intelligence Techniques
,
Springer
,
Singapore
, pp.
1
16
.
28.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A.
,
Kaiser
,
L.
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need //Advances in Neural Information Processing Systems
,”
arXiv
, pp.
5998
6008
.
29.
Tan
,
Z.
,
Wang
,
M.
,
Xie
,
J.
,
Chen
,
Y.
, and
Shi
,
X.
,
2018
, “
Deep Semantic Role Labeling With Self-attention
,”
Proc. AAAI Conf. Artif. Intell.
,
32
(
1
).
30.
USABC Electric Vehicle Battery Test Procedures Manual, U.S. Adv. Battery Consortium, Southfield, MI, USA
,
2006
.
31.
EPA U S. EPA US06 or Supplemental Federal Test Procedure (SFTP) | Emission Standards Reference Guide | US EPA
.
32.
Force E H P B T W T
,
1988
,
A Simplified Version of the Federal Urban Driving Schedule for Electric Vehicle Battery Testing. US Department of Energy
, Report No. DOE/ID-10146.
You do not currently have access to this content.