Abstract

Traditional particle filtering has a large estimation error in the state of charge and Lithium-ion battery health of electric vehicle lithium batteries. For the above-mentioned problems, the lithium battery second-order resistance capacitance (RC) equivalent circuit model is established, and then, the model parameters are identified using the multi-innovation least square algorithm (MILS). Finally, an iterative unscented Kalman particle filtering algorithm with fused Rauch–Tung–Striebel Smoothing Structure (RTS-IUPF) applied to Li-ion battery state-of-charge (SOC) and state-of-health (SOH) joint estimation is proposed. The algorithm is based on the identification of battery parameters; the controller reads the sensor data and predicts the state results. RTS smoothing structure can do posterior estimation, and a significant probability density function is generated to select the optimal particle, and unscented Kalman algorithm regularized particles. The algorithm reduces the effect of the process noise covariance matrix and the measured noise covariance matrix on the filter accuracy and response time in traditional unselected Kalman filters. The algorithm proposed in the paper improves particle degradation and increases the estimation accuracy. Finally, the RTS-IUPF algorithm performs simulation analysis in Pulse current discharge condition and dynamic current condition (NEDC), respectively. The pulse current experimental results show that the mean absolute value error of UKF and particle filter (PF (number of particles N is 300)) is 1.26% and 1.24%, respectively, while the error of the RTS-IUPF is 0.748%. The root-mean-square error (RMSE) of the RTS-IUPF is reduced by 66.5% and 77.8% compared with UKF and PF. Furthermore, the error of joint estimation using this algorithm is smaller than that of single estimation. The RMSE of the RTS-IUPF joint is reduced by 27.4% compared with RTS-IUPF. The feasibility and effectiveness of the algorithm for the joint estimation of SOC and SOH of lithium batteries were verified.

References

1.
Li
,
J. F.
,
Zhao
,
M.
,
Dai
,
C. S.
,
Wang
,
Z. B.
, and
Pecht
,
M.
,
2021
, “
A Mathematical Method for Open-Circuit Potential Curve Acquisition for Lithium-Ion Batteries
,”
J. Electroanal. Chem.
,
895
(
15
), p.
11
.
2.
Cui
,
Z. H.
,
Wang
,
L. C.
,
Li
,
Q.
, and
Wang
,
K.
,
2022
, “
A Comprehensive Review on the State of Charge Estimation for Lithium-Ion Battery Based on Neural Network
,”
Int. J. Energy Res.
,
46
(
5
), pp.
5423
5440
.
3.
Al-Gabalawy
,
M.
,
Hosny
,
N. S.
,
Dawson
,
J. A.
, and
Omar
,
A. I.
,
2021
, “
State of Charge Estimation of a Li-Ion Battery Based on Extended Kalman Filtering and Sensor Bias
,”
Int. J. Energy Res.
,
45
(
5
), pp.
6708
6726
.
4.
Hossain
,
M.
,
Haque
,
M. E.
, and
Arif
,
M. T.
,
2022
, “
Kalman Filtering Techniques for the Online Model Parameters and State of Charge Estimation of the Li-Ion Batteries: A Comparative Analysis
,”
J. Energy Storage.
,
51
, p.
24
.
5.
Zhang
,
K.
,
Ma
,
J.
,
Zhao
,
X.
,
Zhang
,
D. Y.
, and
He
,
Y. L.
,
2019
, “
State of Charge Estimation for Lithium Battery Based on Adaptively Weighting Cubature Particle Filter
,”
IEEE Access
,
7
, pp.
166657
166666
.
6.
Tan
,
X.
,
Tan
,
Y.
,
Zhan
,
D.
,
Yu
,
Z.
,
Fan
,
Y.
,
Qiu
,
J.
, and
Li
,
J.
,
2020
, “
Real-Time State-of-Health Estimation of Lithium-Ion Batteries Based on the Equivalent Internal Resistance
,”
IEEE Access
,
8
, pp.
56811
56822
.
7.
Yang
,
Q. X.
,
Ma
,
K.
,
Xu
,
L. Y.
,
Song
,
L. T.
,
Li
,
X. Q.
, and
Li
,
Y. F.
,
2022
, “
A Joint Estimation Method Based on Kalman Filter of Battery State of Charge and State of Health
,”
Coatings
,
12
(
8
), p.
15
.
8.
Jiang
,
B.
,
Zhu
,
J. G.
,
Wang
,
X. Y.
,
Wei
,
X. Z.
,
Shang
,
W. L.
, and
Dai
,
H. F.
,
2022
, “
A Comparative Study of Different Features Extracted From Electrochemical Impedance Spectroscopy in State of Health Estimation for Lithium-Ion Batteries
,”
Appl. Energy
,
322
(
15
), p.
14
.
9.
Liu
,
F.
,
Liu
,
X.
,
Su
,
W.
,
Lin
,
H.
,
Chen
,
H.
, and
He
,
M.
,
2020
, “
An Online State of Health Estimation Method Based on Battery Management System Monitoring Data
,”
Int. J. Energy Res.
,
44
(
8
), pp.
6338
6349
.
10.
Qin
,
P.
,
Zhao
,
L.
, and
Liu
,
Z.
,
2022
, “
State of Health Prediction for Lithium-ion Battery Using a Gradient Boosting-Based Data-Driven Method
,”
J. Energy Storage.
,
47
, p.
103644
.
11.
van Der Laan
,
N.
,
Cohen
,
M.
,
Arsenault
,
J.
, and
Forbes
,
J. R.
,
2020
, “
The Invariant Rauch-Tung-Striebe Smoother
,”
IEEE Robot. Autom. Lett.
,
5
(
4
), pp.
5067
5074
.
12.
Wang
,
Q.
,
Yang
,
C. S.
,
Wu
,
S. E.
, and
Wang
,
Y.
,
2020
, “
Application of Gravity Passive Aided Strapdown Inertial Navigation in Underwater Vehicles
,”
Int. J. Sens. Netw.
,
32
(
4
), pp.
209
217
.
13.
Moon
,
C.
, and
Kwon
,
A. H. N. Y.
,
2020
, “
Sensorless Speed Control of a Permanent Magnet Synchronous Motor Using an Unscented Kalman Filter With Compensated Covariances
,”
J. Adv. Mar. Eng. Technol.
,
44
(
1
), pp.
42
47
.
14.
Yalcin
,
S.
,
Panchal
,
S.
, and
Herdem
,
M. S.
,
2022
, “
A CNN-ABC Model for Estimation and Optimization of Heat Generation Rate and Voltage Distributions of Lithium-Ion Batteries for Electric Vehicles
,”
Int. J. Heat Mass Transf.
,
199
, p.
13
.
15.
Mevawalla
,
A.
,
Shabeer
,
Y.
,
Tran
,
M. K.
,
Panchal
,
S.
,
Fowler
,
M.
, and
Fraser
,
R.
,
2022
, “
Thermal Modelling Utilizing Multiple Experimentally Measurable Parameters
,”
Batteries.
,
8
(
10
), p.
34
.
16.
Wang
,
Y. Q.
,
Dan
,
D.
,
Zhang
,
Y.
,
Qian
,
Y.
,
Panchal
,
S.
,
Fowler
,
M.
,
Li
,
W.
,
Tran
,
M.
, and
Xie
,
Y.
,
2022
, “
A Novel Heat Dissipation Structure Based on Flat Heat Pipe for Battery Thermal Management System
,”
Int. J. Energy Res.
,
46
(
11
), pp.
15961
15980
.
17.
Wang
,
S. L.
,
Cao
,
J.
,
Xie
,
Y. X.
,
Gao
,
H. Y.
, and
Fernandez
,
C.
,
2022
, “
A Novel 2-RC Equivalent Model Based on the Self-Discharge Effect for Accurate State-of-Charge Estimation of Lithium-Ion Batteries
,”
Int. J. Electrochem. Sci.
,
17
(
7
), p.
17
.
18.
Ji
,
Y. J.
,
Qiu
,
S. L.
, and
Li
,
G.
,
2020
, “
Simulation of Second-Order RC Equivalent Circuit Model of Lithium Battery Based on Variable Resistance and Capacitance
,”
J. Cent. South Univ.
,
27
(
9
), pp.
2606
2613
.
19.
Wu
,
J.
,
Xu
,
H.
, and
Zhu
,
P.
,
2022
, “
Parameter Identification and Validation of Multi-innovation Least Squares Lithium Battery for Second-Order Battery Model
,” Intelligent Systems and Pattern Recognition, CCIS 1589:pp. 180–188.
20.
Qiu
,
X. H.
,
Wu
,
W. X.
, and
Wang
,
S. F.
,
2020
, “
Remaining Useful Life Prediction of Lithium-Ion Battery Based on Improved Cuckoo Search Particle Filter and a Novel State of Charge Estimation Method
,”
J. Power Sources.
,
450
(
29
), p.
13
.
21.
Xu
,
W. H.
,
Wang
,
S.
,
Jiang
,
C.
,
Fernandez
,
C.
,
Yu
,
C.
,
Fan
,
Y.
, and
Cao
,
W.
,
2021
, “
A Novel Adaptive Dual Extended Kalman Filtering Algorithm for the Li-Ion Battery State of Charge and State of Health Co-estimation
,”
Int. J. Energy Res.
,
45
(
10
), pp.
14592
14602
.
22.
Wu
,
Z. Q.
,
Wang
,
G. Y.
,
Xie
,
Z. K.
,
He
,
Y. L.
, and
Lu
,
X. Q.
,
2020
, “
Lithium Battery SOC Estimation Based on Whale Optimization Algorithm and Unscented Kalman Filter
,”
J. Renew. Sustain. Energy
,
12
(
6
), p.
7
.
23.
Liu
,
Q. H.
, and
Yu
,
Q. Q.
,
2022
, “
The Lithium Battery SOC Estimation on Square Root Unscented Kalman Filter
,”
Energy Rep.
,
8
, pp.
286
294
.
You do not currently have access to this content.