Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Models that can accurately describe deformation and stress in lithium-ion batteries are required to inform new device designs that can better withstand mechanical fatigue. Developing such models is particularly challenging because (i) there is a need to capture several different materials including active materials, binders, current collectors, and separators, and (ii) the length scales of interest are highly disparate (ranging from a few microns, relevant to active material particles, up to centimeters, relevant to whole devices). In this study, we present a continuum mechanical model that resolves individual active material particles of a nickel-manganese-cobalt-oxide cathode, and predicts the mechanical response of the cathode coating as a whole. The model is validated by comparison with experimental tests which mimic industrial-scale electrode calendaring, and then a parametric study is conducted to provide insight into the roles of the material and geometric properties of the electrode's constituents on the cathode's overall behavior.

References

1.
Kang
,
K.
,
Meng
,
Y. S.
,
Bréger
,
J.
,
Grey
,
C. P.
, and
Ceder
,
G.
,
2006
, “
Electrodes With High Power and High Capacity for Rechargeable Lithium Batteries
,”
Science
,
311
(
5763
), pp.
977
980
.
2.
Zhao
,
Y.
,
Stein
,
P.
,
Bai
,
Y.
,
Al-Siraj
,
M.
,
Yang
,
Y.
, and
Xu
,
B.-X.
,
2019
, “
A Review on Modeling of Electro-chemo-mechanics in Lithium-Ion Batteries
,”
J. Power Sources
,
413
, pp.
259
283
.
3.
Owen
,
J. R.
,
1997
, “
Rechargeable Lithium Batteries
,”
Chem. Soc. Rev.
,
26
(
4
), pp.
259
267
.
4.
Vetter
,
J.
,
Novák
,
P.
,
Wagner
,
M. R.
,
Veit
,
C.
,
Möller
,
K.-C.
,
Besenhard
,
J.
,
Winter
,
M.
,
Wohlfahrt-Mehrens
,
M.
,
Vogler
,
C.
, and
Hammouche
,
A.
,
2005
, “
Ageing Mechanisms in Lithium-Ion Batteries
,”
J. Power Sources
,
147
(
1–2
), pp.
269
281
.
5.
Etacheri
,
V.
,
Marom
,
R.
,
Elazari
,
R.
,
Salitra
,
G.
, and
Aurbach
,
D.
,
2011
, “
Challenges in the Development of Advanced Li-Ion Batteries: A Review
,”
Energy Environ. Sci.
,
4
(
9
), pp.
3243
3262
.
6.
Safari
,
M.
,
Morcrette
,
M.
,
Teyssot
,
A.
, and
Delacourt
,
C.
,
2009
, “
Multimodal Physics-Based Aging Model for Life Prediction of Li-Ion Batteries
,”
J. Electrochem. Soc.
,
156
(
3
), pp.
A145
A153
.
7.
Sahu
,
S.
, and
Foster
,
J. M.
,
2023
, “
A Continuum Model for Lithium Plating and Dendrite Formation in Lithium-Ion Batteries: Formulation and Validation Against Experiment
,”
J. Energy Storage
,
60
, p.
106516
.
8.
Birkl
,
C. R.
,
Roberts
,
M. R.
,
McTurk
,
E.
,
Bruce
,
P. G.
, and
Howey
,
D. A.
,
2017
, “
Degradation Diagnostics for Lithium Ion Cells
,”
J. Power Sources
,
341
, pp.
373
386
.
9.
McDowell
,
M. T.
,
Xia
,
S.
, and
Zhu
,
T.
,
2016
, “
The Mechanics of Large-Volume-Change Transformations in High-Capacity Battery Materials
,”
Extreme Mech. Lett.
,
9
, pp.
480
494
.
10.
Lenze
,
G.
,
Röder
,
F.
,
Bockholt
,
H.
,
Haselrieder
,
W.
,
Kwade
,
A.
, and
Krewer
,
U.
,
2017
, “
Simulation-Supported Analysis of Calendering Impacts on the Performance of Lithium-Ion-Batteries
,”
J. Electrochem. Soc.
,
164
(
6
), pp.
A1223
A1233
.
11.
Kwade
,
A.
,
Haselrieder
,
W.
,
Leithoff
,
R.
,
Modlinger
,
A.
,
Dietrich
,
F.
, and
Droeder
,
K.
,
2018
, “
Current Status and Challenges for Automotive Battery Production Technologies
,”
Nat. Energy
,
3
(
4
), pp.
290
300
.
12.
Kespe
,
M.
, and
Nirschl
,
H.
,
2015
, “
Numerical Simulation of Lithium-Ion Battery Performance on Sidering Electrode Microstructure
,”
Int. J. Energy Res.
,
39
(
15
), pp.
2062
2074
.
13.
Wang
,
C.-W.
,
Yi
,
Y.-B.
,
Sastry
,
A.
,
Shim
,
J.
, and
Striebel
,
K.
,
2004
, “
Particle Compression and Conductivity in Li-Ion Anodes With Graphite Additives
,”
J. Electrochem. Soc.
,
151
(
9
), pp.
A1489
A1498
.
14.
Giménez
,
C. S.
,
Finke
,
B.
,
Schilde
,
C.
,
Froböse
,
L.
, and
Kwade
,
A.
,
2019
, “
Numerical Simulation of the Behavior of Lithium-Ion Battery Electrodes During the Calendaring Process Via the Discrete Element Method
,”
Powder Technol.
,
349
, pp.
1
11
.
15.
Giménez
,
C. S.
,
Helmers
,
L.
,
Schilde
,
C.
,
Diener
,
A.
, and
Kwade
,
A.
,
2020
, “
Modeling the Electrical Conductive Paths Within All-Solid-State Battery Electrodes
,”
Chem. Eng. Technol.
,
43
(
5
), pp.
819
829
.
16.
Antartis
,
D.
,
Dillon
,
S.
, and
Chasiotis
,
I.
,
2015
, “
Effect of Porosity on Electrochemical and Mechanical Properties of Composite Li-Ion Anodes
,”
J. Compos. Mater.
,
49
(
15
), pp.
1849
1862
.
17.
Zheng
,
H.
,
Tan
,
L.
,
Liu
,
G.
,
Song
,
X.
, and
Battaglia
,
V. S.
,
2012
, “
Calendering Effects on the Physical and Electrochemical Properties of Li [Ni1/3Mn1/3Co1/3] O2 Cathode
,”
J. Power Sources
,
208
, pp.
52
57
.
18.
Haselrieder
,
W.
,
Ivanov
,
S.
,
Christen
,
D. K.
,
Bockholt
,
H.
, and
Kwade
,
A.
,
2013
, “
Impact of the Calendering Process on the Interfacial Structure and the Related Electrochemical Performance of Secondary Lithium-Ion Batteries
,”
ECS Trans.
,
50
(
26
), pp.
59
70
.
19.
Chen
,
L.
,
Xie
,
X.
,
Xie
,
J.
,
Wang
,
K.
, and
Yang
,
J.
,
2006
, “
Binder Effect on Cycling Performance of Silicon/Carbon Composite Anodes for Lithium Ion Batteries
,”
J. Appl. Electrochem.
,
36
(
10
), pp.
1099
1104
.
20.
Chou
,
S.-L.
,
Pan
,
Y.
,
Wang
,
J.-Z.
,
Liu
,
H.-K.
, and
Dou
,
S.-X.
,
2014
, “
Small Things Make a Big Difference: Binder Effects on the Performance of Li and Na Batteries
,”
Phys. Chem. Chem. Phys.
,
16
(
38
), pp.
20347
20359
.
21.
Magasinski
,
A.
,
Zdyrko
,
B.
,
Kovalenko
,
I.
,
Hertzberg
,
B.
,
Burtovyy
,
R.
,
Huebner
,
C. F.
,
Fuller
,
T. F.
,
Luzinov
,
I.
, and
Yushin
,
G.
,
2010
, “
Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid
,”
ACS Appl. Mater. Interfaces
,
2
(
11
), pp.
3004
3010
.
22.
Kim
,
I.-S.
, and
Kumta
,
P. N.
,
2004
, “
High Capacity si/c Nanocomposite Anodes for Li-Ion Batteries
,”
J. Power Sources
,
136
(
1
), pp.
145
149
.
23.
Xiao
,
X.
,
Liu
,
P.
,
Verbrugge
,
M.
,
Haftbaradaran
,
H.
, and
Gao
,
H.
,
2011
, “
Improved Cycling Stability of Silicon Thin Film Electrodes Through Patterning for High Energy Density Lithium Batteries
,”
J. Power Sources
,
196
(
3
), pp.
1409
1416
.
24.
Ebner
,
M.
,
Marone
,
F.
,
Stampanoni
,
M.
, and
Wood
,
V.
,
2013
, “
Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries
,”
Science
,
342
(
6159
), pp.
716
720
.
25.
Liu
,
G.
,
Zheng
,
H.
,
Song
,
X.
, and
Battaglia
,
V. S.
,
2012
, “
Particles and Polymer Binder Interaction: A Controlling Factor in Lithium-Ion Electrode Performance
,”
J. Electrochem. Soc.
,
159
(
3
), pp.
A214
A221
.
26.
Kovalenko
,
I.
,
Zdyrko
,
B.
,
Magasinski
,
A.
,
Hertzberg
,
B.
,
Milicev
,
Z.
,
Burtovyy
,
R.
,
Luzinov
,
I.
, and
Yushin
,
G.
,
2011
, “
A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries
,”
Science
,
334
(
6052
), pp.
75
79
.
27.
Shim
,
J.
,
Kostecki
,
R.
,
Richardson
,
T.
,
Song
,
X.
, and
Striebel
,
K. A.
,
2002
, “
Electrochemical Analysis for Cycle Performance and Capacity Fading of a Lithium-Ion Battery Cycled at Elevated Temperature
,”
J. Power Sources
,
112
(
1
), pp.
222
230
.
28.
Chen
,
J.
,
Liu
,
J.
,
Qi
,
Y.
,
Sun
,
T.
, and
Li
,
X.
,
2013
, “
Unveiling the Roles of Binder in the Mechanical Integrity of Electrodes for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
160
(
9
), pp.
A1502
A1509
.
29.
Santhanagopalan
,
S.
,
Ramadass
,
P.
, and
Zhang
,
J. Z.
,
2009
, “
Analysis of Internal Short-Circuit in a Lithium Ion Cell
,”
J. Power Sources
,
194
(
1
), pp.
550
557
.
30.
Cai
,
W.
,
Wang
,
H.
,
Maleki
,
H.
,
Howard
,
J.
, and
Lara-Curzio
,
E.
,
2011
, “
Experimental Simulation of Internal Short Circuit in Li-Ion and Li-Ion-Polymer Cells
,”
J. Power Sources
,
196
(
18
), pp.
7779
7783
.
31.
Christensen
,
J.
, and
Newman
,
J.
,
2006
, “
A Mathematical Model of Stress Generation and Fracture in Lithium Manganese Oxide
,”
J. Electrochem. Soc.
,
153
(
6
), pp.
A1019
A1030
.
32.
Christensen
,
J.
, and
Newman
,
J.
,
2006
, “
Stress Generation and Fracture in Lithium Insertion Materials
,”
J. Solid State Electrochem.
,
10
(
5
), pp.
293
319
.
33.
Zhang
,
X.
,
Shyy
,
W.
, and
Sastry
,
A. M.
,
2007
, “
Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles
,”
J. Electrochem. Soc.
,
154
(
10
), pp.
A910
A916
.
34.
Klinsmann
,
M.
,
Rosato
,
D.
,
Kamlah
,
M.
, and
McMeeking
,
R. M.
,
2016
, “
Modeling Crack Growth During Li Insertion in Storage Particles Using a Fracture Phase Field Approach
,”
J. Mech. Phys. Solids
,
92
, pp.
313
344
.
35.
Ai
,
W.
,
Kraft
,
L.
,
Sturm
,
J.
,
Jossen
,
A.
, and
Wu
,
B.
,
2020
, “
Electrochemical Thermal–Mechanical Modelling of Stress Inhomogeneity in Lithium-Ion Pouch Cells
,”
J. Electrochem. Soc.
,
167
(
1
), p.
013512
.
36.
Rieger
,
B.
,
Erhard
,
S. V.
,
Rumpf
,
K.
, and
Jossen
,
A.
,
2016
, “
A New Method to Model the Thickness Change of a Commercial Pouch Cell During Discharge
,”
J. Electrochem. Soc.
,
163
(
8
), pp.
A1566
A1575
.
37.
Oh
,
K.-Y.
,
Epureanu
,
B. I.
,
Siegel
,
J. B.
, and
Stefanopoulou
,
A. G.
,
2016
, “
Phenomenological Force and Swelling Models for Rechargeable Lithium-Ion Battery Cells
,”
J. Power Sources
,
310
, pp.
118
129
.
38.
Dai
,
H.
,
Yu
,
C.
,
Wei
,
X.
, and
Sun
,
Z.
,
2017
, “
State of Charge Estimation for Lithium-Ion Pouch Batteries Based on Stress Measurement
,”
Energy
,
129
, pp.
16
27
.
39.
Zhang
,
J.
,
Huang
,
H.
, and
Sun
,
J.
,
2022
, “
Investigation on Mechanical and Microstructural Evolution of Lithium-Ion Battery Electrode During the Calendering Process
,”
Powder Technol.
,
409
, p.
117828
.
40.
Lu
,
X.
,
Daemi
,
S. R.
,
Bertei
,
A.
,
Kok
,
M. D.
,
O’Regan
,
K. B.
,
Rasha
,
L.
,
Park
,
J.
, et al
,
2020
, “
Microstructural Evolution of Battery Electrodes During Calendering
,”
Joule
,
4
(
12
), pp.
2746
2768
.
41.
Nikpour
,
M.
,
Barrett
,
N.
,
Hillman
,
Z.
,
Thompson
,
A. I.
,
Mazzeo
,
B. A.
, and
Wheeler
,
D. R.
,
2021
, “
A Model for Investigating Sources of Li-Ion Battery Electrode Heterogeneity: Part I. Electrode Drying and Calendering Processes
,”
J. Electrochem. Soc.
,
168
(
6
), p.
060547
.
42.
Zhu
,
J.
,
Zhang
,
X.
,
Luoa
,
H.
, and
Sahraei
,
E.
,
2018
, “
Investigation of the Deformation Mechanisms of Lithium-Ion Battery Components Using In-Situ Micro Tests
,”
Appl. Energy
,
224
, pp.
251
266
.
43.
Sahraei
,
E.
,
Kahn
,
M.
,
Meier
,
J.
, and
Wierzbicki
,
T.
,
2015
, “
Modelling of Cracks Developed in Lithium-Ion Cells Under Mechanical Loading
,”
RSC Adv.
,
5
, p.
80369
.
44.
Sahraei
,
E.
,
Bosco
,
E.
,
Dixon
,
B.
, and
Lai
,
B.
,
2016
, “
Microscale Failure Mechanisms Leading to Internal Short Circuit in Li-Ion Batteries Under Complex Loading Scenarios
,”
J. Power Sources
,
319
, pp.
56
65
.
45.
Finegan
,
D. P.
,
Squires
,
I.
,
Dahari
,
A.
,
Kench
,
S.
,
Jungjohann
,
K. L.
, and
Cooper
,
S. J.
,
2022
, “
Machine-Learning-Driven Advanced Characterization of Battery Electrodes
,”
ACS Energy Lett.
,
7
(
12
), pp.
4368
4378
.
46.
Cooper
,
S. J.
,
Eastwood
,
D. S.
,
Gelb
,
J.
,
Damblanc
,
G.
,
Brett
,
D. J.
,
Bradley
,
R. S.
,
Withers
,
P. J.
, et al
,
2014
, “
Image Based Modelling of Microstructural Heterogeneity in LiFePO4 Electrodes for Li-Ion Batteries
,”
J. Power Sources
,
247
, pp.
1033
1039
.
47.
Tan
,
C.
,
Kok
,
M. D.
,
Daemi
,
S. R.
,
Brett
,
D. J.
, and
Shearing
,
P. R.
,
2019
, “
Three-Dimensional Image Based Modelling of Transport Parameters in Lithium–Sulfur Batteries
,”
Phys. Chem. Chem. Phys.
,
21
(
8
), pp.
4145
4154
.
48.
Liu
,
H.
,
Foster
,
J. M.
,
Gully
,
A.
,
Krachkovskiy
,
S.
,
Jiang
,
M.
,
Wu
,
Y.
,
Yang
,
X.
,
Protas
,
B.
,
Goward
,
G. R.
, and
Botton
,
G. A.
,
2016
, “
Three-Dimensional Investigation of Cycling-Induced Microstructural Changes in Lithium-Ion Battery Cathodes Using Focused Ion Beam/Scanning Electron Microscopy
,”
J. Power Sources
,
306
, pp.
300
308
.
49.
Usseglio-Viretta
,
F. L.
, and
Smith
,
K.
,
2017
, “
Quantitative Microstructure Characterization of a NMC Electrode
,”
ECS Trans.
,
77
(
11
), pp.
1095
1118
.
50.
Nara
,
H.
,
Morita
,
K.
,
Mukoyama
,
D.
,
Yokoshima
,
T.
,
Momma
,
T.
, and
Osaka
,
T.
,
2017
, “
Impedance Analysis of LiNi1/3Mn1/3Co1/3O2 Cathodes With Different Secondary-Particle Size Distribution in Lithium-Ion Battery
,”
Electrochim. Acta
,
241
, pp.
323
330
.
51.
Foster
,
J. M.
,
Chapman
,
S. J.
,
Richardson
,
G.
, and
Protas
,
B.
,
2017
, “
A Mathematical Model for Mechanically-Induced Deterioration of the Binder in Lithium-Ion Electrodes
,”
SIAM J. Appl. Math.
,
77
(
6
), pp.
2172
2198
.
52.
Rogak
,
S. N.
, and
Flagan
,
R. C.
,
1990
, “
Stokes Drag on Self-Similar Clusters of Spheres
,”
J. Colloid Interface Sci.
,
134
(
1
), pp.
206
218
.
53.
Kisters
,
T.
,
Sahraei
,
E.
, and
Wierzbicki
,
T.
,
2017
, “
Dynamic Impact Tests on Lithium-Ion Cells
,”
Int. J. Impact Eng.
,
108
, pp.
205
216
.
54.
Dixon
,
B.
,
Mason
,
A.
, and
Sahraei
,
E.
,
2018
, “
Effects of Electrolyte, Loading Rate and Location of Indentation on Mechanical Integrity of Li-Ion Pouch Cells
,”
J. Power Sources
,
396
, pp.
412
420
.
55.
Kisters
,
T.
,
Gilaki
,
M.
,
Nau
,
S.
, and
Sahraei
,
E.
,
2022
, “
Modeling of Dynamic Mechanical Response of Li-Ion Cells With Homogenized Electrolyte–Solid Interactions
,”
J. Energy Storage
,
49
, p.
104069
.
56.
Kisters
,
T.
,
Keshavarzi
,
M.
,
Kuder
,
J.
, and
Sahraei
,
E.
,
2021
, “
Effects of Electrolyte, Thickness, and Casing Stiffness on the Dynamic Response of Lithium-Ion Battery Cells
,”
Energy Rep.
,
7
, pp.
6451
6461
.
57.
Dassault Systemes
,
2022
, Abaqus User’s Manual, https://www.3ds.com/support/documentation/
58.
Schreiner
,
D.
,
Klinger
,
A.
, and
Reinhart
,
G.
,
2020
, “
Modeling of the Calendering Process for Lithium-Ion Batteries With DEM Simulation
,”
Procedia CIRP
,
93
, pp.
149
155
.
59.
Iyer
,
A. H.
,
Gupta
,
P.
,
Gudmundson
,
P.
, and
Kulachenko
,
A.
,
2023
, “
Measuring Microscale Mechanical Properties of PVdF Binder Phase and the Binder-Particle Interface Using Micromechanical Testing
,”
Mater. Sci. Eng. A
,
881
, p.
145352
.
You do not currently have access to this content.