Abstract

As the fundamental part of battery production, the electrode manufacturing processes have a key impact on the mechanical and electrochemical properties of batteries. A comprehensive study is designed in this paper to reveal the manufacturing effect from the perspective of mechanical properties. Initially, the electrode samples are prepared after different manufacturing processes, i.e., slurry mixing, coating, drying, calendering, slitting, punching, cutting, assembling, electrolyte filling, and formation. The effects of these processes on the mechanical response and morphology of electrodes are investigated. The calendering process significantly enhances the strength of both the anode and cathode while providing a more uniform distribution of particles on the electrode. Besides, according to literature studies, the slurry mixing process has a critical impact on electrode deformation and failure. Hence, the effects of compaction density ρc and binder content Bc are further discussed to improve the slurry mixing and calendering processes. The active layer will debond from the current collector during the cathode failure process as ρc and Bc decrease. This study provides valuable suggestions for optimizing the mechanical response of electrodes under key electrode processes.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Lee
,
M. J.
,
Han
,
J.
,
Lee
,
K.
,
Lee
,
Y. J.
,
Kim
,
B. G.
,
Jung
,
K. N.
,
Kim
,
B. J.
, and
Lee
,
S. W.
,
2022
, “
Elastomeric Electrolytes for High-Energy Solid-State Lithium Batteries
,”
Nature
,
601
(
7892
), pp.
217
222
.
2.
Liu
,
Y. J.
,
Tao
,
X. Y.
,
Wang
,
Y.
,
Jiang
,
C.
,
Ma
,
C.
,
Sheng
,
O. W.
,
Lu
,
G. X.
, and
Lou
,
X. W.
,
2022
, “
Self-assembled Monolayers Direct a LiF-Rich Interphase Toward Long-Life Lithium Metal Batteries
,”
Science
,
375
(
6582
), pp.
739
745
.
3.
Cui
,
Z. Z.
,
Li
,
X.
,
Bai
,
X. Y.
,
Ren
,
X. D.
, and
Ou
,
X.
,
2023
, “
A Comprehensive Review of Foreign-ion Doping and Recent Achievements for Nickel-Rich Cathode Materials
,”
Energy Storage Mater.
,
57
, pp.
14
43
.
4.
Chen
,
S. M.
,
Wang
,
Z.
,
Zhang
,
M.
,
Shi
,
X. Z.
,
Wang
,
L.
,
An
,
W. F.
,
Li
,
Z. K.
,
Pan
,
F.
, and
Yang
,
L. Y.
,
2023
, “
Practical Evaluation of Prelithiation Strategies for Next-Generation Lithium-ion Batteries
,”
Carbon Energy
,
5
(
8
), p.
e323
.
5.
Shaffer
,
B.
,
Auffhammer
,
M.
, and
Samaras
,
C.
,
2021
, “
Make Electric Vehicles Lighter to Maximize Climate and Safety Benefits
,”
Nature
,
598
(
7880
), pp.
254
256
.
6.
Abu
,
S. M.
,
Hannan
,
M. A.
,
Lipu
,
M. S. H.
,
Ker
,
P. J.
,
Hossain
,
M. J.
, and
Mahlia
,
T. M. I.
,
2023
, “
State of the Art of Lithium-ion Battery Material Potentials: An Analytical Evaluations, Issues and Future Research Directions
,”
J. Cleaner Prod.
,
394
, p.
136246
.
7.
Rao
,
Y.
,
Yang
,
J. W.
,
Chu
,
S. Y.
,
Guo
,
S. H.
, and
Zhou
,
H. S.
,
2023
, “
Solid-State Li-Air Batteries: Fundamentals, Challenges, and Strategies
,”
Smartmat
,
4
(
4
), p.
e1205
.
8.
Joshi
,
T.
,
Azam
,
S.
,
Juarez-Robles
,
D.
, and
Jeevarajan
,
J. A.
,
2023
, “
Safety and Quality Issues of Counterfeit Lithium-Ion Cells
,”
ACS Energy Lett.
,
8
(
6
), pp.
2831
2839
.
9.
Wang
,
L. B.
,
Chen
,
J. Y.
,
Li
,
J. P.
,
Li
,
B. Q.
, and
Wang
,
T.
,
2022
, “
A Novel Anisotropic Model for Multi-Stage Failure Threshold of Lithium-Ion Battery Subjected to Impact Loading
,”
Int. J. Mech. Sci.
,
236
, p.
107757
.
10.
Wang
,
L. B.
,
Li
,
J. P.
,
Chen
,
J. Y.
,
Duan
,
X. D.
,
Li
,
B. Q.
, and
Li
,
J. N.
,
2023
, “
Revealing the Internal Short Circuit Mechanisms in Lithium-ion Batteries Upon Dynamic Loading Based on Multiphysics Simulation
,”
Appl. Energy
,
351
, p.
121790
.
11.
Zhou
,
G. M.
,
Chen
,
H.
, and
Cui
,
Y.
,
2022
, “
Formulating Energy Density for Designing Practical Lithium-Sulfur Batteries
,”
Nat. Energy
,
7
(
4
), pp.
312
319
.
12.
Song
,
Y.
,
Ruan
,
P. C.
,
Mao
,
C. W.
,
Chang
,
Y. X.
,
Wang
,
L.
,
Dai
,
L.
,
Zhou
,
P.
,
Lu
,
B. A.
,
Zhou
,
J.
, and
He
,
Z. X.
,
2022
, “
Metal-Organic Frameworks Functionalized Separators for Robust Aqueous Zinc-Ion Batteries
,”
Nano-Micro Lett.
,
14
(
1
), p.
218
.
13.
Zhang
,
X. Y.
,
Song
,
W. L.
,
Chen
,
H. S.
, and
Fang
,
D. N.
,
2020
, “
Role of the Binder in the Mechanical Integrity of Micro-Sized Crystalline Silicon Anodes for Li-Ion Batteries
,”
J. Power Sources
,
465
, p.
228290
.
14.
He
,
J. H.
,
Meng
,
J. K.
, and
Huang
,
Y. H.
,
2023
, “
Challenges and Recent Progress in Fast-Charging Lithium-ion Battery Materials
,”
J. Power Sources
,
570
, p.
232965
.
15.
Zhang
,
M. Y.
,
Wang
,
L.
,
Xu
,
H.
,
Song
,
Y. Z.
, and
He
,
X. M.
,
2023
, “
Polyimides as Promising Materials for Lithium-Ion Batteries: A Review
,”
Nano-Micro Lett.
,
15
(
1
), p.
135
.
16.
Kwade
,
A.
,
Haselrieder
,
W.
,
Leithoff
,
R.
,
Modlinger
,
A.
,
Dietrich
,
F.
, and
Droeder
,
K.
,
2018
, “
Current Status and Challenges for Automotive Battery Production Technologies
,”
Nat. Energy
,
3
(
4
), pp.
290
300
.
17.
Li
,
J. L.
,
Fleetwood
,
J.
,
Hawley
,
W. B.
, and
Kays
,
W.
,
2022
, “
From Materials to Cell: State-of-the-Art and Prospective Technologies for Lithium-Ion Battery Electrode Processing
,”
Chem. Rev.
,
122
(
1
), pp.
903
956
.
18.
Bockholt
,
H.
,
Indrikova
,
M.
,
Netz
,
A.
,
Golks
,
F.
, and
Kwade
,
A.
,
2016
, “
The Interaction of Consecutive Process Steps in the Manufacturing of Lithium-ion Battery Electrodes With Regard to Structural and Electrochemical Properties
,”
J. Power Sources
,
325
, pp.
140
151
.
19.
Abdollahifar
,
M.
,
Cavers
,
H.
,
Scheffler
,
S.
,
Diener
,
A.
,
Lippke
,
M.
, and
Kwade
,
A.
,
2023
, “
Insights Into Influencing Electrode Calendering on the Battery Performance
,”
Adv. Energy Mater.
,
13
(
40
), p.
2300973
.
20.
Urdampilleta
,
I.
,
Bengoechea
,
M.
,
de Meatza
,
I.
,
Boyano
,
I.
,
Blazquez
,
J. A.
,
Lizaso
,
L.
,
Mainar
,
A. R.
, et al
,
2023
, “
Holistic Optimization of Lithium-Ion Battery Negative Electrode Formulation Using a Combination of Theory of Mixtures, Box-Behnken Matrix, Multi-Variant Analysis and Desirability Functions of Derringer-Suich
,”
Chem. Eng. J.
,
474
, p.
145271
.
21.
Lippke
,
M.
,
Ohnimus
,
T.
,
Heckmann
,
T.
,
Ivanov
,
D.
,
Scharfer
,
P.
,
Schabel
,
W.
,
Schilde
,
C.
, and
Kwade
,
A.
,
2023
, “
Simulation of Structure Formation During Drying of Lithium-Ion Battery Electrodes Using Discrete Element Method
,”
Energy Technol.
,
11
(
5
), p.
2200724
.
22.
Alabdali
,
M.
,
Zanotto
,
F. M.
,
Duquesnoy
,
M.
,
Hatz
,
A. K.
,
Ma
,
D. C.
,
Auvergniot
,
J.
,
Viallet
,
V.
,
Seznec
,
V.
, and
Franco
,
A. A.
,
2023
, “
Three-Dimensional Physical Modeling of the Wet Manufacturing Process of Solid-State Battery Electrodes
,”
J. Power Sources
,
580
, p.
233427
.
23.
Goel
,
V.
,
Chen
,
K. H.
,
Dasgupta
,
N. P.
, and
Thornton
,
K.
,
2023
, “
Optimization of Laser-Patterned Electrode Architectures for Fast Charging of Li-ion Batteries Using Simulations Parameterized by Machine Learning
,”
Energy Storage Mater.
,
57
, pp.
44
58
.
24.
Duquesnoy
,
M.
,
Liu
,
C. Y.
,
Dominguez
,
D. Z.
,
Kumar
,
V.
,
Ayerbe
,
E.
, and
Franco
,
A. A.
,
2023
, “
Machine Learning-Assisted Multi-Objective Optimization of Battery Manufacturing From Synthetic Data Generated by Physics-Based Simulations
,”
Energy Storage Mater.
,
56
, pp.
50
61
.
25.
Wang
,
L. B.
,
Li
,
B. Q.
,
Chen
,
J. Y.
,
Li
,
J. P.
,
Luo
,
Y.
, and
Lv
,
T. L.
,
2023
, “
Coupled Effect of SOC and SOH on Tensile Behaviors of Lithium-ion Battery Electrodes
,”
J. Energy Storage
,
68
, p.
107782
.
26.
Liu
,
B. H.
,
Duan
,
X. D.
,
Yuan
,
C. H.
,
Wang
,
L. B.
,
Li
,
J. N.
,
Finegan
,
D. P.
,
Feng
,
B.
, and
Xu
,
J.
,
2021
, “
Quantifying and Modeling of Stress-Driven Short-Circuits in Lithium-ion Batteries in Electrified Vehicles
,”
J. Mater. Chem. A
,
9
(
11
), pp.
7102
7113
.
27.
Wang
,
L. B.
,
Jia
,
Y. K.
, and
Xu
,
J.
,
2021
, “
Mechanistic Understanding of the Electrochemo-Dependent Mechanical Behaviors of Battery Anodes
,”
J. Power Sources
,
510
, p.
230428
.
28.
Wang
,
L. B.
,
Duan
,
X. D.
,
Liu
,
B. H.
,
Li
,
Q. M.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Deformation and Failure Behaviors of Anode in Lithium-ion Batteries: Model and Mechanism
,”
J. Power Sources
,
448
, p.
227468
.
29.
Wang
,
Z.
,
Yang
,
L.
,
Zhu
,
S.
,
Song
,
W.-L.
, and
Chen
,
H.-S.
,
2021
, “
Exploring Mechanical Failure of Porous Electrode Meso Structure Using the Discrete Element Method
,”
Extreme Mech. Lett.
,
46
, p.
101252
.
30.
Zhen
,
E. M.
,
Jiang
,
J. M.
,
Lv
,
C.
,
Huang
,
X. W.
,
Xu
,
H.
,
Dou
,
H.
, and
Zhang
,
X. G.
,
2021
, “
Effects of Binder Content on low-Cost Solvent-Free Electrodes Made by Dry-Spraying Manufacturing for Lithium-ion Batteries
,”
J. Power Sources
,
515
, p.
230644
.
31.
Balakrishnan
,
A.
,
Martin
,
C. L.
,
Saha
,
B. P.
, and
Joshi
,
S.
,
2011
, “
Modelling of Compaction and Green Strength of Aggregated Ceramic Powders
,”
J. Am. Ceram. Soc.
,
94
(
4
), pp.
1046
1052
.
32.
Park
,
K.
,
Myeong
,
S.
,
Shin
,
D.
,
Cho
,
C. W.
,
Kim
,
S. C.
, and
Song
,
T.
,
2019
, “
Improved Swelling Behavior of Li ion Batteries by Microstructural Engineering of Anode
,”
J. Ind. Eng. Chem.
,
71
, pp.
270
276
.
33.
Cho
,
M. Y.
,
Lee
,
J. H.
,
Kim
,
S. H.
,
Kim
,
J. S.
, and
Timilsina
,
S.
,
2019
, “
An Extremely Inexpensive, Simple, and Flexible Carbon Fiber Electrode for Tunable Elastomeric Piezo-Resistive Sensors and Devices Realized by LSTM RNN
,”
ACS Appl. Mater. Interfaces
,
11
(
12
), pp.
11910
11919
.
You do not currently have access to this content.