Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Considerable advances have been made in battery safety models, but achieving predictive accuracy across a wide range of conditions continues to be challenging. Interactions between dynamically evolving mechanical, electrical, and thermal state variables make model prediction difficult during mechanical abuse scenarios. In this study, we develop a physics-based modeling approach that allows for choosing between different mechanical and electrochemical models depending on the required level of analysis. We demonstrate the use of this approach to connect cell-level abuse response to electrode-level and particle-level transport phenomena. A pseudo-two-dimensional model and simplified single-particle models are calibrated to electrical–thermal cycling data and applied to mechanically induced short-circuit scenarios to understand how the choice of electrochemical model affects the model prediction under abuse scenarios. These models are implemented using user-defined subroutines on ls-dyna finite element software and can be coupled with existing automotive crash safety models.

References

1.
Bravo Diaz
,
L.
,
He
,
X.
,
Hu
,
Z.
,
Restuccia
,
F.
,
Marinescu
,
M.
,
Barreras
,
J. V.
,
Patel
,
Y.
,
Offer
,
G.
, and
Rein
,
G.
,
2020
, “
Review—Meta-Review of Fire Safety of Lithium-Ion Batteries: Industry Challenges and Research Contributions
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090559
.
2.
Jaguemont
,
J.
, and
Bardé
,
F.
,
2023
, “
A Critical Review of Lithium-Ion Battery Safety Testing and Standards
,”
Appl. Therm. Eng.
,
231
, p.
121014
.
3.
Kisters
,
T.
,
Sahraei
,
E.
, and
Wierzbicki
,
T.
,
2017
, “
Dynamic Impact Tests on Lithium-Ion Cells
,”
Int. J. Impact Eng.
,
108
, pp.
205
216
.
4.
Zhu
,
J.
,
Zhang
,
X.
,
Sahraei
,
E.
, and
Wierzbicki
,
T.
,
2016
, “
Deformation and Failure Mechanisms of 18650 Battery Cells Under Axial Compression
,”
J. Power Sources
,
336
, pp.
332
340
.
5.
Zhu
,
J.
,
Koch
,
M. M.
,
Lian
,
J.
,
Li
,
W.
, and
Wierzbicki
,
T.
,
2020
, “
Mechanical Deformation of Lithium-Ion Pouch Cells Under In-Plane Loads—Part I: Experimental Investigation
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090533
.
6.
Chung
,
S. H.
,
Tancogne-Dejean
,
T.
,
Zhu
,
J.
,
Luo
,
H.
, and
Wierzbicki
,
T.
,
2018
, “
Failure in Lithium-Ion Batteries Under Transverse Indentation Loading
,”
J. Power Sources
,
389
, pp.
148
159
.
7.
Finegan
,
D. P.
,
Tjaden
,
B.
,
Heenan
,
T. M. M.
,
Jervis
,
R.
,
Michiel
,
M. D.
,
Rack
,
A.
,
Hinds
,
G.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2017
, “
Tracking Internal Temperature and Structural Dynamics During Nail Penetration of Lithium-Ion Cells
,”
J. Electrochem. Soc.
,
164
(
13
), pp.
A3285
A3291
.
8.
Zhu
,
X.
,
Wang
,
H.
,
Wang
,
X.
,
Gao
,
Y.
,
Allu
,
S.
,
Cakmak
,
E.
, and
Wang
,
Z.
,
2020
, “
Internal Short Circuit and Failure Mechanisms of Lithium-Ion Pouch Cells Under Mechanical Indentation Abuse Conditions: An Experimental Study
,”
J. Power Sources
,
455
, p.
227939
.
9.
Ruiz
,
V.
,
Pfrang
,
A.
,
Kriston
,
A.
,
Omar
,
N.
,
Van Den Bossche
,
P.
, and
Boon-Brett
,
L.
,
2018
, “
A Review of International Abuse Testing Standards and Regulations for Lithium Ion Batteries in Electric and Hybrid Electric Vehicles
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
1427
1452
.
10.
Xiao
,
Y.
,
Yang
,
F.
,
Gao
,
Z.
,
Liu
,
M.
,
Wang
,
J.
,
Kou
,
Z.
,
Lin
,
Y.
, et al
,
2023
, “
Review of Mechanical Abuse Related Thermal Runaway Models of Lithium-Ion Batteries at Different Scales
,”
J. Energy Storage
,
64
, p.
107145
.
11.
Kim
,
J.
,
Mallarapu
,
A.
, and
Santhanagopalan
,
S.
,
2023
, “Abuse Response of Batteries Subjected to Mechanical Impact,”
Computer Aided Engineering of Batteries
,
S.
Santhanagopalan
, ed.,
Springer International Publishing
,
Cham
, pp.
199
242
.
12.
Sahraei
,
E.
,
Hill
,
R.
, and
Wierzbicki
,
T.
,
2012
, “
Calibration and Finite Element Simulation of Pouch Lithium-Ion Batteries for Mechanical Integrity
,”
J. Power Sources
,
201
, pp.
307
321
.
13.
Wierzbicki
,
T.
, and
Sahraei
,
E.
,
2013
, “
Homogenized Mechanical Properties for the Jellyroll of Cylindrical Lithium-Ion Cells
,”
J. Power Sources
,
241
, pp.
467
476
.
14.
Sahraei
,
E.
,
Campbell
,
J.
, and
Wierzbicki
,
T.
,
2012
, “
Modeling and Short Circuit Detection of 18650 Li-Ion Cells Under Mechanical Abuse Conditions
,”
J. Power Sources
,
220
, pp.
360
372
.
15.
Sahraei
,
E.
,
Kahn
,
M.
,
Meier
,
J.
, and
Wierzbicki
,
T.
,
2015
, “
Modelling of Cracks Developed in Lithium-Ion Cells Under Mechanical Loading
,”
RSC Adv.
,
5
(
98
), pp.
80369
80380
.
16.
Kermani
,
G.
, and
Sahraei
,
E.
,
2017
, “
Review: Characterization and Modeling of the Mechanical Properties of Lithium-Ion Batteries
,”
Energies
,
10
(
11
), p.
1730
.
17.
Zhang
,
C.
,
Xu
,
J.
,
Cao
,
L.
,
Wu
,
Z.
, and
Santhanagopalan
,
S.
,
2017
, “
Constitutive Behavior and Progressive Mechanical Failure of Electrodes in Lithium-Ion Batteries
,”
J. Power Sources
,
357
, pp.
126
137
.
18.
Chen
,
Y.
,
Santhanagopalan
,
S.
,
Babu
,
V.
, and
Ding
,
Y.
,
2019
, “
Dynamic Mechanical Behavior of Lithium-Ion Pouch Cells Subjected to High-Velocity Impact
,”
Compos. Struct.
,
218
, pp.
50
59
.
19.
Feng
,
X.
,
Ouyang
,
M.
,
Liu
,
X.
,
Lu
,
L.
,
Xia
,
Y.
, and
He
,
X.
,
2018
, “
Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review
,”
Energy Storage Mater.
,
10
, pp.
246
267
.
20.
Kim
,
J.
,
Mallarapu
,
A.
,
Finegan
,
D. P.
, and
Santhanagopalan
,
S.
,
2021
, “
Modeling Cell Venting and Gas-Phase Reactions in 18650 Lithium Ion Batteries During Thermal Runaway
,”
J. Power Sources
,
489
, p.
229496
.
21.
Ostanek
,
J. K.
,
Li
,
W.
,
Mukherjee
,
P. P.
,
Crompton
,
K. R.
, and
Hacker
,
C.
,
2020
, “
Simulating Onset and Evolution of Thermal Runaway in Li-Ion Cells Using a Coupled Thermal and Venting Model
,”
Appl. Energy
,
268
, p.
114972
.
22.
Ren
,
D.
,
Feng
,
X.
,
Liu
,
L.
,
Hsu
,
H.
,
Lu
,
L.
,
Wang
,
L.
,
He
,
X.
, and
Ouyang
,
M.
,
2021
, “
Investigating the Relationship Between Internal Short Circuit and Thermal Runaway of Lithium-Ion Batteries Under Thermal Abuse Condition
,”
Energy Storage Mater.
,
34
, pp.
563
573
.
23.
Hatchard
,
T. D.
,
MacNeil
,
D. D.
,
Basu
,
A.
, and
Dahn
,
J. R.
,
2001
, “
Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells
,”
J. Electrochem. Soc.
,
148
(
7
), p.
A755
.
24.
Kim
,
G.-H.
,
Pesaran
,
A.
, and
Spotnitz
,
R.
,
2007
, “
A Three-Dimensional Thermal Abuse Model for Lithium-Ion Cells
,”
J. Power Sources
,
170
(
2
), pp.
476
489
.
25.
Ren
,
D.
,
Liu
,
X.
,
Feng
,
X.
,
Lu
,
L.
,
Ouyang
,
M.
,
Li
,
J.
, and
He
,
X.
,
2018
, “
Model-Based Thermal Runaway Prediction of Lithium-Ion Batteries From Kinetics Analysis of Cell Components
,”
Appl. Energy
,
228
, pp.
633
644
.
26.
Kim
,
J.
,
Yang
,
C.
,
Lamb
,
J.
,
Kurzawski
,
A.
,
Hewson
,
J.
,
Torres-Castro
,
L.
,
Mallarapu
,
A.
, and
Santhanagopalan
,
S.
,
2022
, “
A Comprehensive Numerical and Experimental Study for the Passive Thermal Management in Battery Modules and Packs
,”
J. Electrochem. Soc.
,
169
(
11
), p.
110543
.
27.
Zhao
,
W.
,
Luo
,
G.
, and
Wang
,
C.-Y.
,
2015
, “
Modeling Internal Shorting Process in Large-Format Li-Ion Cells
,”
J. Electrochem. Soc.
,
162
(
7
), pp.
A1352
A1364
.
28.
Yang
,
C.
,
Sunderlin
,
N.
,
Wang
,
W.
,
Churchill
,
C.
, and
Keyser
,
M.
,
2022
, “
Compressible Battery Foams to Prevent Cascading Thermal Runaway in Li-Ion Pouch Batteries
,”
J. Power Sources
,
541
, p.
231666
.
29.
Li
,
Q.
,
Yang
,
C.
,
Santhanagopalan
,
S.
,
Smith
,
K.
,
Lamb
,
J.
,
Steele
,
L. A.
, and
Torres-Castro
,
L.
,
2019
, “
Numerical Investigation of Thermal Runaway Mitigation Through a Passive Thermal Management System
,”
J. Power Sources
,
429
, pp.
80
88
.
30.
Mallarapu
,
A.
,
Kim
,
J.
,
Carney
,
K.
,
DuBois
,
P.
, and
Santhanagopalan
,
S.
,
2020
, “
Modeling Extreme Deformations in Lithium ion Batteries
,”
eTransportation
,
4
, p.
100065
.
31.
Zhang
,
C.
,
Santhanagopalan
,
S.
,
Sprague
,
M. A.
, and
Pesaran
,
A. A.
,
2016
, “
Simultaneously Coupled Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells
,”
ECS Transactions
,
72
(
24
), pp.
9
19
.
32.
Liu
,
B.
,
Zhao
,
H.
,
Yu
,
H.
,
Li
,
J.
, and
Xu
,
J.
,
2017
, “
Multiphysics Computational Framework for Cylindrical Lithium-Ion Batteries Under Mechanical Abusive Loading
,”
Electrochim. Acta
,
256
, pp.
172
184
.
33.
Marcicki
,
J.
,
Zhu
,
M.
,
Bartlett
,
A.
,
Yang
,
X. G.
,
Chen
,
Y.
,
Miller
,
T.
,
L’Eplattenier
,
P.
, and
Caldichoury
,
I.
,
2017
, “
A Simulation Framework for Battery Cell Impact Safety Modeling Using LS-DYNA
,”
J. Electrochem. Soc.
,
164
(
1
), pp.
A6440
A6448
.
34.
Deng
,
J.
,
Bae
,
C.
,
Marcicki
,
J.
,
Masias
,
A.
, and
Miller
,
T.
,
2018
, “
Safety Modelling and Testing of Lithium-Ion Batteries in Electrified Vehicles
,”
Nat. Energy
,
3
(
4
), pp.
261
266
.
35.
Deng
,
J.
,
Smith
,
I.
,
Bae
,
C.
,
Rairigh
,
P.
,
Miller
,
T.
,
Surampudi
,
B.
,
L’Eplattenier
,
P.
, and
Caldichoury
,
I.
,
2020
, “
Impact Modeling and Testing of Pouch and Prismatic Cells
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090550
. .
36.
Li
,
H.
,
Zhou
,
D.
,
Zhang
,
M.
,
Liu
,
B.
, and
Zhang
,
C.
,
2023
, “
Multi-Field Interpretation of Internal Short Circuit and Thermal Runaway Behavior for Lithium-Ion Batteries Under Mechanical Abuse
,”
Energy
,
263
, p.
126027
.
37.
Li
,
H.
,
Liu
,
B.
,
Zhou
,
D.
, and
Zhang
,
C.
,
2020
, “
Coupled Mechanical–Electrochemical–Thermal Study on the Short-Circuit Mechanism of Lithium-Ion Batteries Under Mechanical Abuse
,”
J. Electrochem. Soc.
,
167
(
12
), p.
120501
.
38.
Duan
,
X.
,
Wang
,
H.
,
Jia
,
Y.
,
Wang
,
L.
,
Liu
,
B.
, and
Xu
,
J.
,
2022
, “
A Multiphysics Understanding of Internal Short Circuit Mechanisms in Lithium-Ion Batteries Upon Mechanical Stress Abuse
,”
Energy Storage Mater.
,
45
, pp.
667
679
.
39.
Jia
,
Y.
,
Gao
,
X.
,
Ma
,
L.
, and
Xu
,
J.
,
2023
, “
Comprehensive Battery Safety Risk Evaluation: Aged Cells Versus Fresh Cells Upon Mechanical Abusive Loadings
,”
Adv. Energy Mater.
,
13
(
24
), p.
2300368
.
40.
Feng
,
X.
,
He
,
X.
,
Ouyang
,
M.
,
Wang
,
L.
,
Lu
,
L.
,
Ren
,
D.
, and
Santhanagopalan
,
S.
,
2018
, “
A Coupled Electrochemical-Thermal Failure Model for Predicting the Thermal Runaway Behavior of Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
165
(
16
), pp.
A3748
A3765
.
41.
“LS-DYNA Keyword User's Manual.” https://www.lstc.com/download/manuals.
42.
Sahraei
,
E.
,
Meier
,
J.
, and
Wierzbicki
,
T.
,
2014
, “
Characterizing and Modeling Mechanical Properties and Onset of Short Circuit for Three Types of Lithium-ion Pouch Cells
,”
J. Power Sources
,
247
, pp.
503
516
.
43.
Guo
,
M.
, and
White
,
R. E.
,
2011
, “
Thermal Model for Lithium Ion Battery Pack With Mixed Parallel and Series Configuration
,”
J. Electrochem. Soc.
,
158
(
10
), p.
A1166
.
44.
Fuller
,
T. F.
,
Doyle
,
M.
, and
Newman
,
J.
,
1994
, “
Simulation and Optimization of the Dual Lithium Ion Insertion Cell
,”
J. Electrochem. Soc.
,
141
(
1
), pp.
1
10
.
45.
Gu
,
W. B.
, and
Wang
,
C. Y.
,,
2000
, “
Thermal‐Electrochemical Modeling of Battery Systems
,”
J. Electrochem. Soc.
,
147
(
8
), pp.
2910
2922
.
46.
Santhanagopalan
,
S.
,
Guo
,
Q.
,
Ramadass
,
P.
, and
White
,
R. E.
,
2006
, “
Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries
,”
J. Power Sources
,
156
(
2
), pp.
620
628
.
47.
Wiggins
,
G.
,
Allu
,
S.
, and
Wang
,
H.
,
2019
, “
Battery Cell Data From a 2013 Nissan Leaf
,” Oak Ridge National Laboratory, .
48.
L’Eplattenier
,
P.
, and
Çaldichoury
,
I.
,
2019
, “
BatMac: A Battery Macro Model to Simulate a Full Battery in an Electric or Hybrid Car Crash Using LS-DYNA
,”
Proceedings of 12th European LS-DYNA Conference
,
Koblenz, Germany
,
May 14–16
.
49.
Park
,
S.-Y.
,
Mallarapu
,
A.
,
Lim
,
J.
,
Santhanagopalan
,
S.
,
Han
,
Y.
, and
Choi
,
B.-H.
,
2023
, “
Observation and Modeling of the Thermal Runaway of High-Capacity Pouch Cells Due to an Internal Short Induced by an Indenter
,”
J. Energy Storage
,
72
, p.
108518
.
50.
Maleki
,
H.
,
Al Hallaj
,
S.
,
Selman
,
J. R.
,
Dinwiddie
,
R. B.
, and
Wang
,
H.
,
1999
, “
Thermal Properties of Lithium-Ion Battery and Components
,”
J. Electrochem. Soc.
,
146
(
3
), pp.
947
954
.
51.
Kim
,
J.
,
Mallarapu
,
A.
, and
Santhanagopalan
,
S.
,
2020
, “
Transport Processes in a Li-Ion Cell During an Internal Short-Circuit
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090554
.
You do not currently have access to this content.