In the butterfly-type molten carbonate fuel cell (MCFC), anode and cathode gases enter at the center of the gas channel and divide into two opposite directions in the gas channels, respectively. Mathematical modeling of the butterfly-type unit MCFC has been carried out and the results were compared with those of the co-flow type unit fuel cell, working at the same conditions and using the same amount of gases. In both the anode and the cathode gas channels, the local fuel conversions in the butterfly-type cell were slightly higher than those in the co-flow type fuel cell. Temperature distributions of the electrode-electrolyte plate in the butterfly-type cell were slightly lower than those of the co-flow type fuel cell. The more uniform temperature distributions could be obtained by using the butterfly-type fuel cell. However, distributions of current density and compositions become more nonuniform than those in the co-flow type fuel cell.

1.
Lee
,
C. G.
,
Kang
,
B. S.
,
Seo
,
H. K.
, and
Lim
,
H. C.
, 2003, “
Effect of Gas Phase Transport in Molten Carbonate Fuel Cell
,”
J. Electroanal. Chem.
0022-0728,
540
, pp.
169
188
.
2.
Kim
,
M. H.
,
Park
,
H. K.
,
Chung
,
G. Y.
,
Lim
,
H. C.
,
Nam
,
S. W.
,
Lim
,
T. H.
, and
Hong
,
S. A.
, 2002, “
Effects of Water-Gas Shift Reaction on Simulated Performance of a Molten Carbonate Fuel Cell
,”
J. Power Sources
0378-7753,
103
, pp.
245
252
.
3.
Lee
,
Y. R.
,
Kim
,
I. G.
,
Chung
,
G. Y.
,
Lee
,
C. G.
,
Lim
,
H. C.
,
Lim
,
T. H.
,
Nam
,
S. W.
, and
Hong
,
S A.
.
, 2004, “
Studies on the Initial Behaviors of the Molten Carbonate Fuel Cell
,”
J. Power Sources
0378-7753,
137
, pp.
9
16
.
4.
Smith
,
J. M.
, and
van Ness
,
H. C.
, 1987,
Introduction to chemical engineering thermodynamics
,
McGraw-Hill
, New York, p.
698
.
5.
Park
,
H. K.
,
Lee
,
Y. R.
,
Kim
,
M. H.
,
Chung
,
G. Y.
,
Nam
,
S. W.
,
Hong
,
S. A.
,
Lim
,
T. H.
, and
Lim
,
H. C.
, 2002, “
Studies of the Effects of the Reformer in an Internal-Reforming Molten Carbonate Fuel Cell by Mathematical Modeling
,”
J. Power Sources
0378-7753,
104
, pp.
140
147
.
6.
Kim
,
M. H.
,
Chung
,
G. Y.
,
Nam
,
S. W.
,
Oh
,
I. H.
,
Lim
,
T. H.
, and
Hong
,
S. A.
, 1999, “
The Performances and the Temperature Distributions of the Circular Molten Carbonate Unit Fuel Cell
,”
J. Energy Eng.
0733-9402,
8
(
1
), pp.
7
13
.
7.
Leo
,
J. M.
,
Bolmen
,
J.
, and
Mugerwa
,
M. N.
, 1992,
Fuel Cell Systems
,
Plenum Press
, New York, pp.
345
461
.
8.
Nam
,
S. W.
,
Lim
,
T. H.
,
Oh
,
I. H.
,
Lee
,
K. S.
,
Yoon
,
S. P.
,
Hong
,
S. A.
,
Lim
,
H. C.
,
Lee
,
C. W.
, and
Sun
,
Y. K.
, 1995, “
Performance of a Small-Scale Molten Carbonate Fuel Cell Stack I: Performance of a 100W-Class Cross-Flow Type Stack
,”
HWAHAK KONGHAK
,
33
(
5
), pp.
559
569
.
9.
Appleby
,
A. J.
, and
Foulkes
,
F. R.
, 1989,
Fuel Cell Hand Book
,
Van Nostrand Reinhold
,
New York
, pp.
539
545
.
10.
Yuh
,
C. Y.
, and
Selman
,
J. R.
, 1989, “
Polarization of the Molten Carbonate Fuel Cell Anode and Cathode
,”
J. Electrochem. Soc.
0013-4651,
131
(
9
), pp.
2062
2068
.
11.
Wolf
,
T. L.
, and
Wilemski
,
G.
, 1983, “
Molten Carbonate Fuel Cell Performance Model
,”
J. Electrochem. Soc.
0013-4651,
130
, pp.
48
54
.
You do not currently have access to this content.