The properties of sealing materials are important for the performance and reliability of solid oxide fuel cells (SOFCs). Even if the properties of a sealing material can be studied separately, it remains difficult to quantify the effect of an imperfect seal on the repeat-element behavior. In this study, simulation is used to investigate the effects of an imperfect seal behavior on the performance and reliability of SOFCs. Diffusion through the sealing material and inherent local combustion of fuel are added to the computational fluid dynamics (CFD) repeat-element model, which also allows us to compute the flow field, the electrochemical reactions, and the energy equations. The results are in good agreement with experiments. The zones of parasitic combustion and local overheating are well reproduced. Furthermore, the model predicts a risk of reoxidation under polarization that is well observed. The model also shows the necessity to take into account the diffusion transport for the development of compressive seal materials, hence verifying the hypotheses made by other groups. The modeling approach presented here, which includes the imperfections of components, allows us to reproduce experiments with good accuracy and gives a better understanding of degradation processes. With its reasonable computational cost, it is a powerful tool for a design of SOFC based on reliability.

1.
Simner
,
S.
, and
Stevenson
,
J.
, 2001, “
Compressive Mica Seals for SOFC Applications
,”
J. Power Sources
0378-7753,
102
, pp.
310
316
.
2.
Chou
,
A.
, and
Stevenson
,
J.
, 2004, “
Long-Term Thermal Cycling of Phlogopite Mica-Based Compressive Seals for Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
140
, pp.
340
345
.
3.
Chou
,
A.
,
Stevenson
,
J.
, and
Singh
,
P.
, 2005, “
Thermal Cycle Stability of a Novel Glass-Mica Composite Seal for Solid Oxide Fuel Cells: Effect of Glass Volume Fraction and Stress
,”
J. Power Sources
0378-7753,
152
, pp.
168
174
.
4.
Bram
,
M.
,
Reckers
,
S.
,
Drinovac
,
P.
,
Mönch
,
J.
,
Steinbrech
,
R.
,
Buchkremer
,
P.
, and
Stver
,
D.
, 2004, “
Deformation Behavior and Leakage Tests on Alternate Sealing Materials for SOFC
,”
J. Power Sources
0378-7753,
138
, pp.
111
119
.
5.
Diethelm
,
S.
,
Ihringer
,
R.
,
Autissier
,
N.
,
Wuillemin
,
Z.
,
Prosperi
,
G.
,
Duo
,
I.
,
Bucheli
,
O.
, and
Van herle
,
J.
, 2005, “
Innovative Flexible SOFC Stack Concept
,” ASME Paper No. EFC2005–86116.
6.
Luong
,
M. T.
, 2005, “
Spatial Resolution of Species in a Solid Oxide Fuel Cell (Rsolution spatiale des ractifs gazeux dans une pile combustible de type SOFC)
,” MS Thesis, Laboratory for Industrial Energy Systems (LENI), EPFL.
7.
Molinelli
,
M.
,
Larrain
,
D.
,
Autissier
,
N.
,
Ihringer
,
R.
,
Sfeir
,
J.
,
Badel
,
N.
,
Bucheli
,
O.
, and
Van Herle
,
J.
, 2004, “
Compact 100W Stacks Using Thin Components of Anode-Supported Cells and Metal Interconnectts
,”
Proceedings of the Sixth European Solid Oxide Fuel Cell Forum
,
Lucerne, Switzerland
, Vol.,
1
, pp.
135
144
.
8.
Autissier
,
N.
,
Larrain
,
D.
,
Van herle
,
J.
, and
Favrat
,
D.
, 2004, “
CFD Simulation Tool for Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
131
, pp.
313
319
.
9.
Nakajo
,
A.
,
Wuillemin
,
Z.
,
Van herle
,
J.
,
Metzger
,
P.
, and
Bundschuh
,
N.
, 2006, “
Determination of an Electrochemical Model From Experiments on a Segmented Solid Oxide Fuel Cell
,”
Presented at the Third Fuel Cell Research Symposium on Modeling and Experimental Validation
,
EMPA
,
Dübendorf, Switzerland
.
10.
Larrain
,
D.
, 2005, “
Solid Oxide Fuel Cell Stack Simulation and Optimization, Including Experimental Validation and Transient Behavior
,” Ph.D. Thesis,Ecole Polytechnique Federale de Lausanne, Switzerland.
11.
Cussler
,
E. L.
, 1986,
Diffusion Mass Trnasfer in Fluid Systems
,
Cambridge University Press
,
Cambridge, UK
.
12.
Suwanwarangkul
,
R.
,
Croiset
,
E.
,
Fowler
,
M. W.
,
Douglas
,
P. L.
,
Entchev
,
E.
, and
Douglas
,
M. A.
, 2002, “
Performance Comparison of Fick’s, Dusty-Gas and Stefan-Maxwell Models to Predict the Concentration Overpotential of a SOFC Anode
,”
J. Power Sources
0378-7753,
122
, pp.
9
18
.
13.
Li
,
J.
,
Thao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
, 2004, “
An Updated Comprehensive Kinetic Model of Hydrogen Combustion
,”
Int. J. Chem. Kinet.
0538-8066,
36
, pp.
566
575
.
14.
Lo Jacono
,
D.
,
Papas
,
P.
,
Matalon
,
M.
, and
Monkewitz
,
P. A.
, 2004, “
An Experimental Realization of an Unstrained, Planar Diffusion Flame
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
501
509
.
15.
FLUENT software reaction kinetics database.
16.
Smith
,
N.
,
Gore
,
J.
,
Kim
,
J.
, and
Tang
,
Q.
, 2003, “
Radiation Models
,”
Internal Workshop on Measurement and Computation of Turbulent Nonpremixed Flames
, Sandia National Laboratories (http://www.ca.sandia.gov/TNF/radiation.htmlhttp://www.ca.sandia.gov/TNF/radiation.html).
17.
Waldbillig
,
D.
,
Wood
,
A.
, and
Ivey
,
D. G.
, 2004, “
Thermal Analysis of the Cylcic Reduction and Oxidation Behaviour of SOFC Anodes
,”
Solid State Ionics
0167-2738,
176
, pp.
847
859
.
You do not currently have access to this content.