Automotive use of fuel cells has received increased attention due to clean and efficient power generation. Successful vehicular applications require careful balance of design and control trade-offs. This article presents a model-based vehicle design capability with sufficient fidelity and efficiency to perform design and power management optimization using quasisteady fuel cell performance maps. Optimized fuel cell systems demonstrate a trade-off between power density and efficiency depending on compressor size. Vehicle performance can be improved significantly when the fuel cell system is designed to balance this trade-off.

1.
Larminie
,
J.
, and
Dicks
,
A.
, 2002,
Fuel Cell System Explained
, 2nd ed.,
Wiley
,
New York
.
2.
Bernardi
,
D.
, and
Verbrugge
,
M.
, 1991, “
Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
0001-1541,
37
(
8
), pp.
1151
1163
.
3.
Rowe
,
A.
, and
Li
,
X.
, 2001, “
Mathematical Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
102
(
1–2
), pp.
82
96
.
4.
Springer
,
T. E.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1993, “
Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
(
12
), pp.
3513
3526
.
5.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
, 1995, “
Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
142
(
1
), pp.
1
8
.
6.
Baschuk
,
J.
, and
Li
,
X.
, 2000, “
Modelling of Polymer Electrolyte Membrane Fuel Cells With Variable Degrees of Water Flooding
,”
J. Power Sources
0378-7753,
86
, pp.
181
196
.
7.
Bussel
,
H.
,
Koene
,
F.
, and
Mallant
,
R.
, 1998, “
Dynamic Model of Solid Polymer Fuel Cell Water Management
,”
J. Power Sources
0378-7753,
71
, pp.
218
222
.
8.
Berg
,
P.
,
Promislow
,
K.
,
Pierre
,
J.
, and
Stumper
,
J.
, 2004, “
Water Management in PEM Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
151
(
3
), pp.
A341
A353
.
9.
Amphlett
,
J. C.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Rodrigues
,
A.
, 1996, “
Model Predicting Transient Responses of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
61
, pp.
183
188
.
10.
Wohr
,
M.
,
Bolwin
,
K.
,
Schnurnberger
,
W.
,
Fischer
,
M.
,
Neubrand
,
W.
, and
Eigenberger
,
G.
, 1998, “
Dynamic Modelling and Simulation of a Polymer Membrane Fuel Cell Including Mass Transport Limitation
,”
Int. J. Hydrogen Energy
0360-3199,
23
(
3
), pp.
213
218
.
11.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2001, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
94
, pp.
40
50
.
12.
Pukrushpan
,
J. T.
,
Stefanopoulou
,
A. G.
, and
Peng
,
H.
, 2004,
Control of Fuel Cell Power Systems, Principles, Modeling, Analysis and Feedback Design
,
Springer
,
New York
.
13.
Xue
,
D.
, and
Dong
,
Z.
, 1998, “
Optimal Fuel Cell System Design Considering Functional Performance and Production Costs
,”
J. Power Sources
0378-7753,
76
(
1
), pp.
69
80
.
14.
Mawardi
,
A.
,
Yang
,
F.
, and
Pitchumani
,
R.
, 2005, “
Optimization of the Operating Parameters of a Proton Exchange Membrane Fuel Cell for Maximum Power Density
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
2
(
2
), pp.
121
135
.
15.
Cunningham
,
J.
,
Hoffman
,
M.
,
Moore
,
R.
, and
Friedman
,
D.
, 1999, “
Requirements for a Flexible and Realistic Air Supply Model for Incorporation Into a Fuel Cell Vehicle (FCV) System Simulation
,”
Future Transportation Technology Conference and Exposition
,
Costa Mesa, CA
, Aug. 17–19.
16.
Assanis
,
D.
,
Filipi
,
Z.
,
Gravante
,
S.
,
Grohnke
,
D.
,
Louca
,
L.
,
Rideout
,
G.
,
Stein
,
J.
, and
Wang
,
Y.
, 2000, “
Validation and Use of Simulink Integrated, High Fidelity, Engine-in-Vehicle Simulation of the International Class VI Truck
,” SAE Paper No. 2000-01-0288.
17.
Markel
,
T.
,
Brooker
,
A.
,
Hendricks
,
T.
,
Johnson
,
V.
,
Kelly
,
K.
,
Kramer
,
B.
,
O’Keefe
,
M.
,
Sprik
,
S.
, and
Wipke
,
K.
, 2002, “
Advisor: A System Analysis Tool for Advanced Vehicle Modeling
,”
J. Power Sources
0378-7753,
110
(
2
), pp.
255
266
.
18.
Murphy
,
K.
,
Kalata
,
P.
,
Fischl
,
R.
, and
Marchio
,
D.
, “
On Modeling Surge Avoidance Controllers (sac) in Compressors, Design Procedure
,”
Proceedings of the American Control Conference
,
Seattle, WA
, June.
19.
Jones
,
D.
, 1999,
DIRECT, Encyclopedia of Optimization
,
Kluwer
,
Dordrecht
.
20.
Holmstrom
,
K.
, 1989, gclsolve.m: A Standalone Version of Direct, Software Documentation, Revision 2.00, HKH MatrisAnalys AB, Sweden.
22.
Audet
,
C.
, and
Dennis
, Jr.,
J. E.
, 2006, “
Mesh Adaptive Direct Search Algorithms for Constrained Optimization
,”
Optim.
0233-1934,
17
(
2
), pp.
188
217
.
23.
Abramson
,
M. A.
,
Audet
,
C.
, and
Dennis
, Jr.,
J. E.
, 2004, “
Generalized Pattern Searches With Derivative Information
,”
Math. Program.
0025-5610,
100
(
1
), pp.
3
25
.
24.
Cunningham
,
J.
,
Moore
,
R.
, and
Ramaswamy
,
S.
, 2003, “
A Comparison of Energy Use for a Direct-Hydrogen Hybrid Versus a Direct-Hydrogen Load-Following Fuel Cell Vehicle
,” SAE Paper No. 2003-01-0416.
You do not currently have access to this content.