Automotive use of fuel cells has received increased attention due to clean and efficient power generation. Successful vehicular applications require careful balance of design and control trade-offs. This article presents a model-based vehicle design capability with sufficient fidelity and efficiency to perform design and power management optimization using quasisteady fuel cell performance maps. Optimized fuel cell systems demonstrate a trade-off between power density and efficiency depending on compressor size. Vehicle performance can be improved significantly when the fuel cell system is designed to balance this trade-off.
Issue Section:
Research Papers
1.
Larminie
, J.
, and Dicks
, A.
, 2002, Fuel Cell System Explained
, 2nd ed., Wiley
, New York
.2.
Bernardi
, D.
, and Verbrugge
, M.
, 1991, “Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,” AIChE J.
0001-1541, 37
(8
), pp. 1151
–1163
.3.
Rowe
, A.
, and Li
, X.
, 2001, “Mathematical Modeling of Proton Exchange Membrane Fuel Cells
,” J. Power Sources
0378-7753, 102
(1–2
), pp. 82
–96
.4.
Springer
, T. E.
, Wilson
, M. S.
, and Gottesfeld
, S.
, 1993, “Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells
,” J. Electrochem. Soc.
0013-4651, 140
(12
), pp. 3513
–3526
.5.
Amphlett
, J. C.
, Baumert
, R. M.
, Mann
, R. F.
, Peppley
, B. A.
, and Roberge
, P. R.
, 1995, “Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell
,” J. Electrochem. Soc.
0013-4651, 142
(1
), pp. 1
–8
.6.
Baschuk
, J.
, and Li
, X.
, 2000, “Modelling of Polymer Electrolyte Membrane Fuel Cells With Variable Degrees of Water Flooding
,” J. Power Sources
0378-7753, 86
, pp. 181
–196
.7.
Bussel
, H.
, Koene
, F.
, and Mallant
, R.
, 1998, “Dynamic Model of Solid Polymer Fuel Cell Water Management
,” J. Power Sources
0378-7753, 71
, pp. 218
–222
.8.
Berg
, P.
, Promislow
, K.
, Pierre
, J.
, and Stumper
, J.
, 2004, “Water Management in PEM Fuel Cells
,” J. Electrochem. Soc.
0013-4651, 151
(3
), pp. A341
–A353
.9.
Amphlett
, J. C.
, Mann
, R. F.
, Peppley
, B. A.
, Roberge
, P. R.
, and Rodrigues
, A.
, 1996, “Model Predicting Transient Responses of Proton Exchange Membrane Fuel Cells
,” J. Power Sources
0378-7753, 61
, pp. 183
–188
.10.
Wohr
, M.
, Bolwin
, K.
, Schnurnberger
, W.
, Fischer
, M.
, Neubrand
, W.
, and Eigenberger
, G.
, 1998, “Dynamic Modelling and Simulation of a Polymer Membrane Fuel Cell Including Mass Transport Limitation
,” Int. J. Hydrogen Energy
0360-3199, 23
(3
), pp. 213
–218
.11.
Wang
, Z. H.
, Wang
, C. Y.
, and Chen
, K. S.
, 2001, “Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,” J. Power Sources
0378-7753, 94
, pp. 40
–50
.12.
Pukrushpan
, J. T.
, Stefanopoulou
, A. G.
, and Peng
, H.
, 2004, Control of Fuel Cell Power Systems, Principles, Modeling, Analysis and Feedback Design
, Springer
, New York
.13.
Xue
, D.
, and Dong
, Z.
, 1998, “Optimal Fuel Cell System Design Considering Functional Performance and Production Costs
,” J. Power Sources
0378-7753, 76
(1
), pp. 69
–80
.14.
Mawardi
, A.
, Yang
, F.
, and Pitchumani
, R.
, 2005, “Optimization of the Operating Parameters of a Proton Exchange Membrane Fuel Cell for Maximum Power Density
,” ASME J. Fuel Cell Sci. Technol.
1550-624X, 2
(2
), pp. 121
–135
.15.
Cunningham
, J.
, Hoffman
, M.
, Moore
, R.
, and Friedman
, D.
, 1999, “Requirements for a Flexible and Realistic Air Supply Model for Incorporation Into a Fuel Cell Vehicle (FCV) System Simulation
,” Future Transportation Technology Conference and Exposition
, Costa Mesa, CA
, Aug. 17–19.16.
Assanis
, D.
, Filipi
, Z.
, Gravante
, S.
, Grohnke
, D.
, Louca
, L.
, Rideout
, G.
, Stein
, J.
, and Wang
, Y.
, 2000, “Validation and Use of Simulink Integrated, High Fidelity, Engine-in-Vehicle Simulation of the International Class VI Truck
,” SAE Paper No. 2000-01-0288.17.
Markel
, T.
, Brooker
, A.
, Hendricks
, T.
, Johnson
, V.
, Kelly
, K.
, Kramer
, B.
, O’Keefe
, M.
, Sprik
, S.
, and Wipke
, K.
, 2002, “Advisor: A System Analysis Tool for Advanced Vehicle Modeling
,” J. Power Sources
0378-7753, 110
(2
), pp. 255
–266
.18.
Murphy
, K.
, Kalata
, P.
, Fischl
, R.
, and Marchio
, D.
, “On Modeling Surge Avoidance Controllers (sac) in Compressors, Design Procedure
,” Proceedings of the American Control Conference
, Seattle, WA
, June.19.
Jones
, D.
, 1999, DIRECT, Encyclopedia of Optimization
, Kluwer
, Dordrecht
.20.
Holmstrom
, K.
, 1989, gclsolve.m: A Standalone Version of Direct, Software Documentation, Revision 2.00, HKH MatrisAnalys AB, Sweden.21.
Abramson
, M.
, 2005, Nomadm Version 3.31 User’s Guide; http://en.afit.edu/ENC/Faculty/MAbramson/NOMADm.htmlhttp://en.afit.edu/ENC/Faculty/MAbramson/NOMADm.html.22.
Audet
, C.
, and Dennis
, Jr., J. E.
, 2006, “Mesh Adaptive Direct Search Algorithms for Constrained Optimization
,” Optim.
0233-1934, 17
(2
), pp. 188
–217
.23.
Abramson
, M. A.
, Audet
, C.
, and Dennis
, Jr., J. E.
, 2004, “Generalized Pattern Searches With Derivative Information
,” Math. Program.
0025-5610, 100
(1
), pp. 3
–25
.24.
Cunningham
, J.
, Moore
, R.
, and Ramaswamy
, S.
, 2003, “A Comparison of Energy Use for a Direct-Hydrogen Hybrid Versus a Direct-Hydrogen Load-Following Fuel Cell Vehicle
,” SAE Paper No. 2003-01-0416.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.