Austenitic 349 stainless steel was nitrided in an NH3 plasma. A low interfacial contact resistance was obtained with the nitrided steel. Glancing angle X-ray diffraction suggests that the nitrided layer is very thin and possibly amorphous. X-ray photoelectron spectroscopy (XPS) studies show that the nitrided layer is composed of mixed oxides and nitrides of Fe3+ and Cr3+. Contaminations of V and Sn were also observed, though their influence on the as-nitrided surface conductivity is not clear. The nitrided samples were investigated in a simulated polymer electrolyte membrane fuel cell (PEMFC) environment, and showed excellent corrosion resistance. The XPS depth profile indicated that the passive film, which formed on the plasma-nitrided steel in the PEMFC anode environment, is composed of mixed oxides and nitrides, in which chromium oxide/nitride dominates the surface chemistry. No V or Sn was detected on the surface after the polarization tests. For the PEMFC bipolar plate application, nitridation in NH3 plasma is a promising surface treatment approach, though more research is needed to investigate the influence of the plasma density and substrate bias on the surface conductivity and performance of the nitrided steel in PEMFC environments.

1.
Hermann
,
A.
,
Chaudhuri
,
T.
, and
Spagnol
,
P.
, 2005, “
Bipolar Plates for PEM Fuel Cells: A Review
,”
Int. J. Hydrogen Energy
0360-3199,
30
, pp.
1297
1302
.
2.
Iversen
,
A. K.
, 2006, “
Stainless Steels in Bipolar Plates-Surface Resistive Properties of Corrosion Resistant Steel Grades During Current Loads
,”
Corros. Sci.
0010-938X,
48
, pp.
1036
1058
.
3.
Tian
,
R.
,
Sun
,
J.
, and
Wang
,
L.
, 2006, “
Plasma-Nitrided Austenitic Stainless Steel 316L as Bipolar Plate for PEMFC
,”
Int. J. Hydrogen Energy
0360-3199,
31
, pp.
1874
1878
.
4.
Tian
,
R. J.
,
Sun
,
J. C.
, and
Wang
,
L.
, 2007, “
Effect of Plasma Nitriding on Behavior of Austenitic Stainless Steel 304L Bipolar Plate in Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
163
, pp.
719
724
.
5.
Wang
,
H.
,
Sweikart
,
M. A.
, and
Turner
,
J. A.
, 2003, “
Stainless Steel as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
115
, pp.
243
251
.
6.
Wang
,
H.
,
Teeter
,
G.
, and
Turner
,
J. A.
, 2010, “
Plasma Nitrided Type 349 Stainless Steel for Polymer Electrolyte Membrane Fuel Cell Bipolar Plate—Part I: Nitrided in Nitrogen Plasma
,”
J. Fuel Cell Sci. Technol.
1550-624X,
7
, p.
021018
.
7.
Liu
,
P.
,
Zhang
,
J. -G.
, and
Turner
,
J. A.
,
Tracy
,
C. E.
,
Benson
,
K.
, and
Bhattacharya
,
R. N.
,” 1998, “
Fabrication of LiV2O5 Thin-Film Electrodes for Rechargeable Lithium Batteries
,”
Solid State Ionics
0167-2738,
111
, pp.
145
151
.
8.
Munson
,
C. P.
,
Faehl
,
R. J.
,
Henins
,
I.
,
Nastasi
,
M.
,
Reass
,
W. A.
,
Rej
,
D. J.
,
Scheuer
,
J. T.
,
Walter
,
K. C.
, and
Wood
,
B. P.
, 1996, “
Recent Advances in Plasma Source Ion Implantation at Los Alamos National Laboratory
,”
Surf. Coat. Technol.
0257-8972,
84
, pp.
528
536
.
9.
Ma
,
L.
,
Warthesen
,
S.
, and
Shores
,
D. A.
, 2000, “
Evaluation of Materials for Bipolar Plates in PEMFCs
,”
J. New Mater. Electrochem. Syst.
1480-2422,
3
, pp.
221
228
.
10.
Wang
,
H.
,
Teeter
,
G.
, and
Turner
,
J. A.
, 2005, “
Investigation of a Duplex Stainless Steel as Polymer Electrolyte Membrane Fuel Cell Bipolar Plate Material
,”
J. Electrochem. Soc.
0013-4651,
152
, pp.
B99
B104
.
11.
Wang
,
H.
, and
Turner
,
J.
, 2006, “
On the Passivation of 349TM Stainless Steel in Simulated PEMFC Cathode Environment
,”
ECS Trans.
1938-5862,
1
(
6
), pp.
263
272
.
12.
De Vito
,
E.
, and
Marcus
,
P.
, 1992, “
XPS Study of Passive Films Formed on Molybdenum-Implanted Austenitic Stainless Steels
,”
Surf. Interface Anal.
0142-2421,
19
, pp.
403
408
.
13.
Stefanov
,
P.
,
Stoychev
,
D.
,
Stoycheva
,
M.
,
Gonzalez-Elipe
,
A. R.
, and
Marinova
,
Ts.
, 1999, “
XPS, SEM and TEM Characterization of Stainless-Steel 316L Surfaces After Electrochemical Etching and Oxidizing
,”
Surf. Interface Anal.
0142-2421,
28
, pp.
106
110
.
14.
Bera
,
S.
,
Rangarajan
,
S.
, and
Narasimhan
,
S. V.
, 2000, “
Electrochemical Passivation of Iron Alloys and the Film Characterization by XPS
,”
Corros. Sci.
0010-938X,
42
, pp.
1709
1724
.
15.
Moulder
,
J. F.
,
Stickle
,
W. F.
,
Sobol
,
P. E.
, and
Bomben
,
K. D.
, 1992,
Handbook of X-Ray Photoelectron Spectroscopy
,
J.
Chastain
, ed.,
Perkin-Elmer
,
Eden Prairie, MN
.
16.
Liang
,
W.
,
Xiaolei
,
X.
,
Jiujun
,
X.
, and
Yaqin
,
S.
, 2001, “
Characteristics of Low Pressure Plasma Arc Source Ion Nitrided Layer on Austenitic Stainless Steel at Low Temperature
,”
Thin Solid Films
0040-6090,
391
, pp.
11
16
.
17.
Chyou
,
S. D.
, and
Shin
,
H. C.
, 1991, “
X-Ray Photoelectron Spectroscopy and Auger Electron Spectroscopy Stuides on the Passivation Behavior of Plasma-Nitrided Low Alloy Steel in Nitric Acid
,”
Mater. Sci. Eng., A
0921-5093,
148
, pp.
241
251
.
18.
Lei
,
M. K.
, and
Zhu
,
X. M.
, 2004, “
Chemical State of Nitrogen in a High Nitrogen Face-Centered-Cubic Phase Formed on Plasma Source Ion Nitrided Austenitic Stainless Steel
,”
J. Vac. Sci. Technol. A
0734-2101,
22
, pp.
2067
2070
.
19.
Brooks
,
A. R.
,
Clayton
,
C. R.
,
Doss
,
K.
, and
Lu
,
Y. C.
, 1986, “
On the Role of Cr in the Passivity of Stainless Steel
,”
J. Electrochem. Soc.
0013-4651,
133
, pp.
2459
2464
.
20.
Yang
,
M. Z.
,
Luo
,
J. L.
,
Yang
,
Q.
,
Qiao
,
L. J.
,
Qin
,
Z. Q.
, and
Norton
,
P. R.
, 1999, “
Effects of Hydrogen on Semiconductivity of Passive Films and Corrosion Behavior of 310 Stainless Steel
,”
J. Electrochem. Soc.
0013-4651,
146
, pp.
2107
2112
.
You do not currently have access to this content.