Hybrid electric fuel cell vehicles are studied using a system perspective that explores the tradeoffs among fuel economy, acceleration, and other vehicle attributes. Design decisions are derived from an enterprise decision-making model that seeks to maximize profit. Uncertainties stemming from manufacturing variability, customer preferences, and market response to fuel price fluctuations are also included. The system is hierarchically partitioned into three levels that comprise enterprise, powertrain, fuel cell, and battery subsystem models. Analytical target cascading, a decomposition-based multidisciplinary design optimization strategy, is used to solve the resulting problem. Results indicate a strong interaction between enterprise and engineering considerations, and a significant impact of uncertainty on the optimal system design.

1.
Grujicic
,
M.
,
Chittajallu
,
K.
, and
Pukrushpan
,
J.
, 2004, “
Control of the Transient Behaviour of Polymer Electrolyte Membrane Fuel Cell Systems
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
218
(
11
), pp.
1239
1250
.
2.
Guezennec
,
Y.
,
Choi
,
T. -Y.
,
Paganelli
,
G.
, and
Rizzoni
,
G.
, 2003, “
Supervisory Control of Fuel Cell Vehicles and Its Link to Overall System Efficiency and Low-Level Control Requirements
,”
Proceedings of the American Control Conference
, Denver, CO, Jun. 4–6, Vol.
3
, pp.
2055
2061
.
3.
Roan
,
V.
, and
Fletcher
,
J.
, 1994, “
Comparison of Several Alternative Fuels for Fuel-Cell Vehicle Applications
,”
Proceedings of the 29th Intersociety Energy Conversion Engineering Conference
, Monterey, CA, pp.
1083
1089
, Paper No. AIAA-1994-3796.
4.
Kato
,
Y.
,
Otsuka
,
K.
, and
Liu
,
C.
, 2005, “
Carbon Dioxide Zero-Emission Hydrogen Carrier System for Fuel Cell Vehicle
,”
Chem. Eng. Res. Des.
0263-8762,
83
(
7
), pp.
900
904
.
5.
Brachmann
,
T.
,
Kawasaki
,
S.
,
Ono
,
T.
,
Ogura
,
M.
, and
Kami
,
Y.
, 2004, “
The Progress of the Fuel Cell-and Fuel Cell Vehicle Development at Honda
,”
VDI-Ber.
0083-5560,
1852
, pp.
533
550
.
6.
Akella
,
S.
,
Sivashankar
,
N.
, and
Gopalswamy
,
S.
, 2001, “
Model-Based Systems Analysis of a Hybrid Fuel Cell Vehicle Configuration
,”
Proceedings of the American Control Conference
, Arlington, VA, Vol.
3
, pp.
1777
1782
.
7.
Han
,
J.
,
Kokkolaras
,
M.
, and
Papalambros
,
P. Y.
, 2008, “
Optimal Design of Hybrid Fuel Cell Vehicles
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
5
(
4
), p.
041014
.
8.
Balling
,
R.
, and
Sobieszczanski-Sobieski
,
J.
, 1996, “
Optimization of Coupled Systems: A Critical Overview of Approaches
,”
AIAA J.
0001-1452,
34
(
1
), pp.
6
17
.
9.
Braun
,
R.
,
Kroo
,
I.
, and
Moore
,
A.
, 1996, “
Use of the Collaborative Optimization Architecture for Launch Vehicle Design
,”
Sixth AIAA, NASA, and ISSMO, Symposium on Multidisciplinary Analysis and Optimization
, Bellevue, WA, pp.
306
318
.
10.
Cramer
,
E. J.
,
Dennis
,
J. E.
, Jr.
,
Frank
,
P. D.
,
Lewis
,
R. M.
, and
Shubin
,
G. R.
, 1994, “
Problem Formulation for Multidisciplinary Optimization
,”
SIAM J. Optim.
1052-6234,
4
(
4
), pp.
754
776
.
11.
Kroo
,
I.
,
Altus
,
S.
,
Braun
,
R.
,
Gage
,
P.
, and
Sobieski
,
I.
, 1994, “
Multidisciplinary Optimization Methods for Aircraft Preliminary Design
,”
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Panama City, FL, pp.
697
707
, Paper No. AIAA 94-4325.
12.
Kim
,
H. M.
,
Michelena
,
N.
,
Papalambros
,
P.
, and
Jiang
,
T.
, 2003, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
474
480
.
13.
Kokkolaras
,
M.
,
Mourelatos
,
Z. P.
, and
Papalambros
,
P. Y.
, 2006, “
Design Optimization of Hierarchically Decomposed Multilevel Systems Under Uncertainty
,”
ASME J. Mech. Des.
0161-8458,
128
(
2
), pp.
503
508
.
14.
Liu
,
H.
,
Chen
,
W.
,
Kokkolaras
,
M.
,
Papalambros
,
P.
, and
Kim
,
H.
, 2006, “
Probabilistic Analytical Target Cascading: A Moment Matching Formulation for Multilevel Optimization Under Uncertainty
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
991
1000
.
15.
Han
,
J.
, and
Papalambros
,
P. Y.
, 2007, “
An SLP Filter Algorithm for Probabilistic Analytical Target Cascading
,”
The Seventh World Congress on Structural and Multidisciplinary Optimization
, COEX Seoul, Korea.
16.
Han
,
J.
, and
Papalambros
,
P. Y.
, 2007, “
A sequential Linear Programming Coordination Algorithm for Analytical Target Cascading
,” ASME Paper No. DETC2007-35361.
17.
Chan
,
K. -Y.
,
Skerlos
,
S. J.
, and
Papalambros
,
P.
, 2007, “
An Adaptive Sequential Linear Programming Algorithm for Optimal Design Problems With Probabilistic Constraints
,”
ASME J. Mech. Des.
0161-8458,
129
(
2
), pp.
140
149
.
18.
Pukrushpan
,
J. T.
,
Stefanopoulou
,
A. G.
, and
Peng
,
H.
, 2004,
Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design
,
Springer
,
New York
.
19.
Carlson
,
E.
,
Kopf
,
P.
,
Sinha
,
J.
,
Sriramulu
,
S.
, and
Yang
,
Y.
, 2005, “
PEM Fuel Cell Cost Status—2005
,”
Fuel Cell Seminar & Exposition
, Palm Springs, CA.
20.
Department of Energy and Department of Transportation
, 2006, “
Hydrogen Posture Plan: An Integrated Research, Development and Demonstration Plan
.”
21.
Davies
,
D.
, and
Adcock
,
P.
, 2002, “
Lightweight, High Power Density Fuel Cell Stack
,” Energy Technology Support Unit, Harwell Laboratory, UK, Technical Report No. ETSU F02/00216/REP.
22.
Scrosati
,
B.
, 1992, “
Lithium Rocking Chair Batteries: An Old Concept?
,”
J. Electrochem. Soc.
0013-4651,
139
(
10
), pp.
2776
2781
.
23.
Fuller
,
T. F.
,
Doyle
,
M.
, and
Newman
,
J.
, 1994, “
Simulation and Optimization of the Dual Lithium Ion Insertion Cell
,”
J. Electrochem. Soc.
0013-4651,
141
(
1
), pp.
1
10
.
24.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
, 1993, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
0013-4651,
140
(
6
), pp.
1526
1533
.
25.
Idaho National Laboratory
, 2001, “
PNGV Battery Test Manual Revision 3
,” U.S. Department of Energy’s Office of Nuclear Energy, Science and Technology, Report No. DOE/ID-10597.
26.
Lin
,
C. -C.
,
Peng
,
H.
,
Grizzle
,
J. W.
, and
Kang
,
J. -M.
, 2003, “
Power Management Strategy for a Parallel Hybrid Electric Truck
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
11
(
6
), pp.
839
849
.
27.
Lin
,
C. -C.
,
Peng
,
H.
, and
Grizzle
,
J. W.
, 2004, “
A Stochastic Control Strategy for Hybrid Electric Vehicles
,”
Proceedings of the 2004 American Control Conference
, Vol.
5
, pp.
4710
4715
.
28.
Paganelli
,
G.
,
Tateno
,
M.
,
Brahma
,
A.
,
Rizzoni
,
G.
, and
Guezennec
,
Y.
, 2001, “
Control Development for a Hybrid-Electric Sport-Utility Vehicle: Strategy, Implementation and Field Test Results
,”
Proceedings of the 2001 American Control Conference
, Arlington, VA, Vol.
6
, pp.
5064
5069
.
29.
Musardo
,
C.
,
Rizzoni
,
G.
, and
Staccia
,
B.
, 2005, “
A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management
,”
44th IEEE Conference on Decision and Control and European Control Conference
, Seville, Spain, pp.
1816
1823
.
30.
Allison
,
J.
, 2008, “
Optimal Partitioning and Coordination Decisions in Decomposition-Based Design Optimization
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
31.
Ogden
,
J. M.
,
Williams
,
R. H.
, and
Larson
,
E. D.
, 2004, “
Societal Lifecycle Costs of Cars With Alternative Fuels/Engines
,”
Energy Policy
0301-4215,
32
(
1
), pp.
7
27
.
32.
Lipman
,
T. E.
, and
Delucchi
,
M. A.
, 2003, “
Hybrid Electric Vehicle Design: Retail and Lifecycle Cost Analysis
,” Institute of Transportation Studies, University of California, Davis, Technical Report No. UCD-ITS-RR-03-01.
33.
EG&G Idaho, Inc.
, 1988, “
A Simplified Version of the Federal Urban Driving Schedule for Electric Vehicle Battery Testing, Electric and Hybrid Propulsion Battery Test Working Force
,” Idaho Falls, Aug.
34.
Cooper
,
A. B.
,
Georgiopoulos
,
P.
,
Kim
,
H. M.
, and
Papalambros
,
P. Y.
, 2006, “
Analytical Target Setting: An Enterprise Context in Optimal Product Design
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
4
13
.
35.
Adner
,
R.
, and
Levinthal
,
D.
, 2001, “
Demand Heterogeneity and Technology Evolution: Implications for Product and Process Innovation
,”
Manage. Sci.
0025-1909,
47
(
5
), pp.
611
628
.
36.
EPA
, 2002, “
Nonconformance Penalties for 2004 Highway Heavy Duty Diesel Engines
,” United States Environmental Protection Agency, Final Technical Support Document No. EPA420-R-02-021.
37.
Department of Energy
, 2007, “
Energy Prices
,” http://www.eia.doe.gov/price.htmlhttp://www.eia.doe.gov/price.html.
38.
U.S. Department of Transportation, National Highway Traffic Safety Administration
, 2004, “
Summary of Fuel Economy Performance
,” U.S. Department of Transportation, Washington, DC, Technical Report No. NVS-220.
39.
Adams
,
J.
,
Yang
,
W.
,
Oglesby
,
K.
, and
Osborne
,
K.
, 2000, “
The Development Of Ford’s P2000 Fuel Cell Vehicle
,”
SAE 2000 World Congress
, Detroit, MI.
40.
Chung
,
S. -Y.
,
Bloking
,
J. T.
, and
Chiang
,
Y. -M.
, 2002, “
Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes
,”
Nat. Mater.
,
1
(
2
), pp.
123
128
. 1476-1122
You do not currently have access to this content.