Experiments are performed to study the single-phase transient forced convection heat transfer on an array of 4×1 flush-mounted discrete heat sources in a vertical rectangular channel during the pump-on transient operation. Water is the coolant media and the flow covers the wide range of laminar flow regime with Reynolds number, based on heat source length, from 800 to 2625. The applied uniform heat flux ranges from 1 to 7Wcm2. For flush-mounted heaters the heat transfer characteristics are studied and correlations are presented for four chips as well as for overall data in the transient regime. The experimental results indicate that the heat transfer coefficient is affected strongly by the number of chips and the Reynolds number. Finally the general impacts of heat source protrusions (B=1, 2 mm) on heat transfer behavior of four chips are investigated by comparing the results obtained from flush-mounted (B=0) heaters.

1.
Xu
,
G. P.
,
Tso
,
C. P.
, and
Tou
,
K. W.
, 1996, “
A Review on Direct Liquid Cooling Channel Flow With Single-Phase for Electronic Systems
, ”
J. Electronic Manufacturing
,
6
, pp.
115
125
.
2.
Mudawar
,
I
, 1992, “
Direct-immersion Cooling for High Power Electronic Chips
,”
Proc. 1992 Intersociety Conference on Thermal Phenomenon
, pp.
74
84
.
3.
Mudawar
,
I.
, and
Maddox
,
D. E.
, 1989, “
Enhancement of Critical Heat Flux From High Power Microelectronic Heat Sources in a Flow Channel
,”
Heat Transfer in Electronics-1989
,
R. K.
Shah
, ed., HTD-Vol.
111
,
ASME
, New York, pp.
51
58
.
4.
Incropera
,
F. P.
,
Kerby
,
J. S.
,
Moffatt
,
D. F.
, and
Ramadhyani
,
S.
, 1986, “
Convection Heat Transfer from Discrete Heat Sources in a Rectangular Channel
,”
Int. J. Heat Mass Transfer
0017-9310,
29
, pp.
1051
1058
.
5.
Gersey
,
C. O.
, and
Mudawar
,
I.
, 1993, “
Nucleate Boiling and Critical Heat Flux from Protruded Chip Arrays during Flow Boiling
,”
J. Electron. Packag.
1043-7398,
115
, pp.
78
88
.
6.
Keyhani
,
M.
,
Prasad
,
V.
, and
Cox
,
R.
, 1988, “
An Experimental Study of Natural Convection in a Vertical Cavity with Discrete Heat Sources
,”
J. Heat Transfer
0022-1481,
110
, pp.
616
624
.
7.
Siegel
,
R.
, 1960, “
Heat Transfer for Laminar Flow in Ducts with Arbitrary Time Variations in Wall Temperature
,”
J. Appl. Mech.
0021-8936,
82E
, pp.
241
249
.
8.
Siegel
,
R.
, and
Sparrow
,
E. M.
, 1959 “
Transient Heat Transfer for Laminar Forced Convection in the Thermal Entrance Region of Flat Ducts
,”
J. Heat Transfer
0022-1481,
81C
, pp.
29
36
.
9.
Siegel
,
R.
, 1959, “
Transient Heat Transfer for Laminar Slug Flow in Ducts
,”
J. Appl. Mech.
0021-8936,
81E
, pp.
140
142
.
10.
Perlmutter
,
M.
, and
Siegel
,
R.
, 1961, “
Unsteady Flow in a Duct with Unsteady Heat Addition
,”
J. Heat Transfer
0022-1481,
83C
, pp.
432
440
.
11.
Kim
,
W. S.
, and
Öziik
,
M. N.
, 1987, “
Transient Laminar Forced Convection in Ducts with Suddenly Applied Uniform Wall Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
1753
1756
.
12.
Yang
,
H. X.
, and
Zhu
,
Z. J.
, 2003 “
Numerical Study of Transient Laminar Natural Convection in an Inclined Parallel-Walled Channel
,”
Int. Commun. Heat Mass Transfer
0735-1933,
30
, pp.
359
367
.
13.
Joshi
,
Y.
,
Kelleher
,
M. D.
,
Powell
,
M.
, and
Torres
,
E. I.
, 1991, “
Heat Transfer Enhancement in Electronics Cooling
,”
HTD (Am. Soc. Mech. Eng.)
0272-5673,
183
, pp.
9
13
.
14.
Garimella
,
S. V.
, and
Eibeck
,
P. A.
, 1990, “
Heat Transfer Characteristics of an Array of Protruding Elements in Single Phase Forced Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
33
, pp.
2659
2669
.
15.
Garimella
,
S. V.
, and
Schlitz
,
D. J.
, 1993, “
Reducing Inter-chip Temperature Differences in Computers Using Vortex Generators in Forced Convection
,”
J. Electron. Packag.
1043-7398,
115
, pp.
410
415
.
16.
Kang
,
B. H.
, and
Jaluria
,
Y.
, 1990, “
Mixed Convection Transport From a Protruding Heat Sources Module on a Vertical Surface
,”
J. Thermophys. Heat Transfer
0887-8722,
4
, pp.
384
390
.
17.
Kang
,
B. H.
,
Jaluria
,
Y.
, and
Tewari
,
S.
, 1990, “
Mixed Convection Transport from an Isolated Heat Source Module on Horizontal Plate
,”
J. Heat Transfer
0022-1481,
112
, pp.
653
661
.
18.
Tou
,
K. W.
,
Xu
,
G. P.
, and
Tso
,
C. P.
, 1998, “
Direct Liquid Cooling of Electronic Chips by Single-phase Forced Convection on FC-72
,”
Exp. Heat Transfer
0891-6152,
11
, pp.
121
134
.
19.
Bhowmik
,
H.
,
Tso
,
C. P.
, and
Tou
,
K. W.
, 2003, “
Thermal Behavior of Simulated Chips During Power-off Transient Period
,”
5th Electronic Packaging Technology Conference
, Singapore, pp.
497
500
.
20.
Tso
,
C. P.
,
Tou
,
K. W.
, and
Bhowmik
,
H.
, 2004, “
Experimental and Numerical Thermal Transient Behavior of Chips in a Liquid Channel During Loss of Pumping Power
,”
J. Electron. Packag.
1043-7398,
126
(
4
), pp.
546
553
.
21.
Tso
,
C. P.
,
Xu
,
G. P.
, and
Tou
,
K. W.
, 1999, “
An Experimental Study on Forced Convection Heat Transfer from Flush-mounted Discrete Heat Sources
,”
J. Heat Transfer
0022-1481,
121
, pp.
326
332
.
22.
Perry
,
J. H.
, 1963,
Chemical Engineer’s Handbook
, 4th Ed.
McGraw-Hill
, New York.
23.
Willingham
,
T. C.
, and
Mudawar
,
I.
, 1970, “
Forced Convection Boiling and Critical Heat Flux from a Linear Array of Discrete Heat Sources
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
2879
2890
.
24.
Heindel
,
T. J.
,
Ramadhyani
,
S. R.
, and
Incropera
,
F. P.
, 1992, “
Liquid Immersion Cooling of a Longitudinal Array of Discrete Heat Sources in Protruding Substrates: 2-Forced Convection Boiling
,”
J. Electron. Packag.
1043-7398,
114
, pp.
55
62
.
25.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
26.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts, Advances in Heat Transfer
, Suppl. No. 1,
Academic
, New York.
You do not currently have access to this content.