Abstract

Silicon-based embedded microchannel with three-dimensional (3D) manifold (MF) μ-cooler offers lower pressure drop and increased heat removal capability (>1 kW/cm2) for microprocessors and power electronics cooling using single-phase water. In this paper, we present a thermal–fluidic numerical analysis of silicon-embedded microchannel cooling. We develop a full-scale computational fluid dynamics (CFD) model of a large footprint (24 × 24 mm2) device having embedded microchannels and a 3D manifold. It is found that the pressure/velocity distributions at three different critical regions inside the inlet manifold have a significant impact on the temperature distribution. A previous study reported a shift of the chip temperature hot-spot at high flow rates; this study delves deep into the flow and pressure variations within the MF and cold plate (CP) that leads to this shift. This study also investigates the degree of flow maldistribution, first between the manifold channels caused by the plenum and then between the cold plate channels caused by individual MF channels. Finally, this study concludes with a comparison between two different 3D manifold inlet channel heights. The comparison reveals that the manifold with 1.5 mm thickness can reduce the pressure drop by a factor of 4 while maintaining the same thermal resistance of 0.04 K cm2/W, thus indicating an increase in the coefficient of performance (COP) by a factor of 4, compared with a manifold thickness of 0.7 mm.

References

1.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2007
, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.10.1080/01457630601117799
2.
Wei
,
T.
,
2020
, “
All-in-One Design Integrates Microfluidic Cooling Into Electronic Chips
,”
Nature
,
585
(
7824
), pp.
188
189
.10.1038/d41586-020-02503-1
3.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
4.
Jung
,
K. W.
,
Zhou
,
F.
,
Asheghi
,
M.
,
Dede
,
E. M.
, and
Goodson
,
K. E.
,
2019
, “
Experimental Study of Single-Phase Cooling With DI Water in an Embedded Microchannels-3D Manifold Cooler
,” IEEE 21st Electronics Packaging Technology Conference (
EPTC
), Singapore, Dec. 4–6, pp.
164
166
.10.1109/EPTC47984.2019.9026600
5.
Jung
,
K. W.
,
Kharangate
,
C. R.
,
Lee
,
H.
,
Palko
,
J.
,
Zhou
,
F.
,
Asheghi
,
M.
,
Dede
,
E. M.
, and
Goodson
,
K. E.
,
2017
, “
Microchannel Cooling Strategies for High Heat Flux (1 kW/cm2) Power Electronic Applications
,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, July 27, pp.
98
105
.10.1109/ITHERM.2017.7992457
6.
Ryu
,
J. H.
,
Choi
,
D. H.
, and
Kim
,
S. J.
,
2003
, “
Three-Dimensional Numerical Optimization of a Manifold Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
46
(
9
), pp.
1553
1562
.10.1016/S0017-9310(02)00443-X
7.
Boteler
,
L.
,
Jankowski
,
N.
,
McCluskey
,
P.
, and
Morgan
,
B.
,
2012
, “
Numerical Investigation and Sensitivity Analysis of Manifold Microchannel Coolers
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7698
7708
.10.1016/j.ijheatmasstransfer.2012.07.073
8.
Zhou
,
F.
,
Dede
,
E. M.
, and
Joshi
,
S. N.
,
2015
, “
A Novel Design of Hybrid Slot Jet and Mini-Channel Cold Plate for Electronics Cooling
,” 31st Thermal Measurement, Modeling and Management Symposium (
SEMI-THERM
), San Jose, CA, Mar. 15–19, pp.
60
67
.10.1109/SEMITHERM.2015.7100141
9.
Sarangi
,
S.
,
Bodla
,
K. K.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2014
, “
Manifold Microchannel Heat Sink Design Using Optimization Under Uncertainty
,”
Int. J. Heat Mass Transfer
,
69
, pp.
92
105
.10.1016/j.ijheatmasstransfer.2013.09.067
10.
Mandel
,
R.
,
Shooshtari
,
A.
, and
Ohadi
,
M.
,
2018
, “
A ‘2.5-D’ Modeling Approach for Single-Phase Flow and Heat Transfer in Manifold Microchannels
,”
Int. J. Heat Mass Transfer
,
126
(Part A), pp.
317
330
.10.1016/j.ijheatmasstransfer.2018.04.145
11.
Sharma
,
C. S.
,
Tiwari
,
M. K.
,
Zimmermann
,
S.
,
Brunschwiler
,
T.
,
Schlottig
,
G.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2015
, “
Energy Efficient Hot-Spot-Targeted Embedded Liquid Cooling of Electronics
,”
Appl. Energy
,
138
, pp.
414
422
.10.1016/j.apenergy.2014.10.068
12.
Escher
,
W.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2010
, “
A Novel High Performance, Ultra Thin Heat Sink for Electronics
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
586
598
.10.1016/j.ijheatfluidflow.2010.03.001
13.
Hazra
,
S.
,
Piazza
,
A.
,
Jung
,
K. W.
,
Asheghi
,
M.
,
Gupta
,
M. P.
,
Jih
,
E.
,
Degner
,
M.
, and
Goodson
,
K. E.
,
2020
, “
Microfabrication Challenges for Silicon-Based Large Area (>500 mm2) 3D-Manifolded Embedded Microcooler Devices for High Heat Flux Removal
,” 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, July 21–23,
pp.
83
90
.10.1109/ITherm45881.2020.9190541
14.
Piazza
,
A.
,
Hazra
,
S.
,
Jung
,
K. W.
,
Degner
,
M.
,
Gupta
,
M. P.
,
Jih
,
E.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2020
, “
Considerations and Challenges for Large Area Embedded Micro-Channels With 3D Manifold in High Heat Flux Power Electronics Applications
,” 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, July 21–23, pp.
77
82
.10.1109/ITherm45881.2020.9190179
15.
Jung
,
K. W.
,
Hazra
,
S.
,
Kwon
,
H.
,
Piazza
,
A.
,
Jih
,
E.
,
Asheghi
,
M.
,
Gupta
,
M. P.
,
Degner
,
M.
, and
Goodson
,
K. E.
,
2019
, “
Parametric Study of Silicon-Based Embedded Microchannels With 3D Manifold Coolers (EMMC) for High Heat Flux (∼1 kW/cm2) Power Electronics Cooling
,”
ASME
Paper No. IPACK2019-6472.10.1115/IPACK2019-6472
16.
Wei
,
T.
,
Oprins
,
H.
,
Cherman
,
V.
,
Beyne
,
E.
, and
Baelmans
,
M.
,
2019
, “
Conjugate Heat Transfer and Fluid Flow Modeling for Liquid Microjet Impingement Cooling With Alternating Feeding and Draining Channels
,”
Fluids
,
4
(
3
), p.
145
.10.3390/fluids4030145
17.
ANSYS Tutorial,
2022, “
Near-Wall Mesh Guidelines
,” ANSYS Tutorial, Canonsburg, PA, accessed Sept. 13, 2022, https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node410.htm
18.
Hazra
,
S.
,
Wei
,
T. W.
,
Lin
,
Y. J.
,
Asheghi
,
M.
,
Goodson
,
K. E.
,
Gupta
,
M. P.
, and
Degner
,
M.
, “
Parametric Design Analysis of a Multi-Level 3D Manifolded Microchannel Cooler Via Reduced Order Numerical Modeling
,”
Int. J. Heat Mass Transfer
, 197, p. 123356.10.1016/j.ijheatmasstransfer.2022.123356
19.
Jung
,
K. W.
,
Kharangate
,
C. R.
,
Lee
,
H.
,
Palko
,
J.
,
Zhou
,
F.
,
Asheghi
,
M.
,
Dede
,
E. M.
, and
Goodson
,
K. E.
,
2019
, “
Embedded Cooling With 3D Manifold for Vehicle Power Electronics Application: Single-Phase Thermal-Fluid Performance
,”
Int. J. Heat Mass Transfer
,
130
, pp.
1108
1119
.10.1016/j.ijheatmasstransfer.2018.10.108
You do not currently have access to this content.