Abstract

Thermoelectric coolers (TECs) have emerged as promising cooling solutions; however, their relatively low coefficient of performance (COP) remains challenging. Hence, to better understand the factors influencing TEC efficiency and to guide the design of more effective systems, a three-dimensional numerical model is developed. It includes temperature-dependent thermoelectric properties (Thomson effect) and convective–radiative heat interactions. This study explores the TEC performance by analyzing various leg configurations, such as segmented and non-segmented legs, with constant and variable cross section using different material compositions to maximize the cooling effect and COP. Cylindrical legs outperformed conventional square legs, offering a 3% increase in COP and 2.5% in cooling effect. The non-segmented legs emphasize the need for condition-specific material selection, while segmented legs show up to 6.3% higher COP and 5.5% better cooling effect at lower currents, with performance declining at higher currents. A larger temperature lift between the hot and cold sides reduces TEC efficiency. The material-specific segmented leg length ratio can be optimized for maximum performance. A uniform circular leg cross section is more effective than a variable one. Incorporating the temperature-dependent material properties and the Thomson effect in the model significantly increases the TEC performance (up to 30%). Similarly, considering convective–radiative heat interaction in the model increases the performance (about 10%). These two inclusions enhance the accuracy of performance prediction of the model used in this study. These findings provide valuable insights for designing TECs according to application and operating conditions.

References

1.
Ranjan
,
R.
,
Turnev
,
J. E.
,
Lents
,
C. E.
, and
Faustino
,
V. H.
,
2014
, “
Design of Thermoelectric Modules for High Heat Flux Cooling
,”
ASME J. Electron. Packag.
,
136
(
4
), p.
041001
.10.1115/1.4028118
2.
Sarkar
,
J.
,
2013
, “
Performance Optimization of Transcritical CO2 Refrigeration Cycle With Thermoelectric Subcooler
,”
Int. J. Energy Res.
,
37
(
2
), pp.
121
128
.10.1002/er.1879
3.
Irshad
,
K.
,
Habib
,
K.
,
Saidur
,
R.
,
Kareem
,
M. W.
, and
Saha
,
B. B.
,
2019
, “
Study of Thermoelectric and Photovoltaic Facade System for Energy Efficient Building Development: A Review
,”
J. Cleaner Prod.
,
209
, pp.
1376
1395
.10.1016/j.jclepro.2018.09.245
4.
Şişik
,
B.
, and
LeBlanc
,
S.
,
2020
, “
The Influence of Leg Shape on Thermoelectric Performance Under Constant Temperature and Heat Flux Boundary Conditions
,”
Front. Mater.
,
7
, p.
595955
.10.3389/fmats.2020.595955
5.
Vikhor
,
L. N.
, and
Anatychuk
,
L. I.
,
2006
, “
Theoretical Evaluation of Maximum Temperature Difference in Segmented Thermoelectric Coolers
,”
Appl. Therm. Eng.
,
26
(
14–15
), pp.
1692
1696
.10.1016/j.applthermaleng.2005.11.009
6.
Cheng
,
C. H.
, and
Huang
,
S. Y.
,
2012
, “
Development of a Non-Uniform-Current Model for Predicting Transient Thermal Behavior of Thermoelectric Coolers
,”
Appl. Energy
,
100
, pp.
326
335
.10.1016/j.apenergy.2012.05.063
7.
Müller
,
E.
,
Walczak
,
S.
, and
Seifert
,
W.
,
2006
, “
Optimization Strategies for Segmented Peltier Coolers
,”
Phys. Status Solidi A
,
203
(
8
), pp.
2128
2141
.10.1002/pssa.200521047
8.
Anatychuk
,
L. I.
, and
Cherkez
,
R. G.
,
2012
, “
Energy Potential of Permeable Segmented Thermoelements in Cooling Mode
,”
J. Electron. Mater.
,
41
(
6
), pp.
1115
1119
.10.1007/s11664-012-1946-4
9.
Fergus
,
J. W.
,
Yerkes
,
K.
, and
Yost
,
K.
,
2014
, “
Numerical Modeling of Multimaterial Thermoelectric Devices Under Static and Cyclic Thermal Loading
,”
J. Electron. Mater.
,
43
(
2
), pp.
393
403
.10.1007/s11664-013-2858-7
10.
Badillo-Ruiz
,
C. A.
,
Olivares-Robles
,
M. A.
, and
Ruiz-Ortega
,
P. E.
,
2018
, “
Performance of Segmented Thermoelectric Cooler Micro-Elements With Different Geometric Shapes and Temperature-Dependent Properties
,”
Entropy
,
20
(
2
), p.
118
.10.3390/e20020118
11.
Drabkin
,
I. A.
,
2019
, “
Coefficient of the Performance of a Segmented Thermoelectric Cooling Leg
,”
Semiconductors
,
53
(
5
), pp.
678
681
.10.1134/S1063782619050051
12.
Lundgaard
,
C.
, and
Sigmund
,
O.
,
2019
, “
Design of Segmented Thermoelectric Peltier Coolers by Topology Optimization
,”
Appl. Energy
,
239
, pp.
1003
1013
.10.1016/j.apenergy.2019.01.247
13.
Shen
,
L.
,
Zhang
,
W.
,
Liu
,
G.
,
Tu
,
Z.
,
Lu
,
Q.
,
Chen
,
H.
, and
Huang
,
Q.
,
2020
, “
Performance Enhancement Investigation of Thermoelectric Cooler With Segmented Configuration
,”
Appl. Therm. Eng.
,
168
, p.
114852
.10.1016/j.applthermaleng.2019.114852
14.
Ruiz-Ortega
,
P. E.
,
Olivares-Robles
,
M. A.
, and
Badillo-Ruiz
,
C. A.
,
2021
, “
Transient Thermal Behavior of a Segmented Thermoelectric Cooler With Variable Cross-Sectional Areas
,”
Int. J. Energy Res.
,
45
(
13
), pp.
19215
19225
.10.1002/er.7123
15.
Bell
,
L.
, and
Crane
,
D.
,
2022
, “
Thermoelectric Systems Employing Distributed Transport Properties to Increase Cooling and Heating Performance
,” U.S. Patent No.
11,421,919
.https://patents.google.com/patent/US20210302075A1/en
16.
Huang
,
M. J.
,
Yen
,
R. H.
, and
Wang
,
A. B.
,
2005
, “
The Influence of the Thomson Effect on the Performance of a Thermoelectric Cooler
,”
Int. J. Heat Mass Transfer
,
48
(
2
), pp.
413
418
.10.1016/j.ijheatmasstransfer.2004.05.040
17.
Wang
,
X. D.
,
Huang
,
Y. X.
,
Cheng
,
C. H.
,
Ta-Wei Lin
,
D.
, and
Kang
,
C. H.
,
2012
, “
A Three-Dimensional Numerical Modeling of Thermoelectric Device With Consideration of Coupling of Temperature Field and Electric Potential Field
,”
Energy
,
47
(
1
), pp.
488
497
.10.1016/j.energy.2012.09.019
18.
Snyder
,
G. J.
,
Toberer
,
E. S.
,
Khanna
,
R.
, and
Seifert
,
W.
,
2012
, “
Improved Thermoelectric Cooling Based on the Thomson Effect
,”
Phys. Rev. B
,
86
(
4
), p.
045202
.10.1103/PhysRevB.86.045202
19.
Lam
,
T. T.
,
Yuan
,
S. W. K.
,
Fong
,
E.
, and
Fischer
,
W. D.
,
2018
, “
Analytical Study of Transient Performance of Thermoelectric Coolers Considering the Thomson Effect
,”
Int. J. Therm. Sci.
,
130
, pp.
435
448
.10.1016/j.ijthermalsci.2018.03.010
20.
Wang
,
C.
,
Yang
,
X.
,
Shen
,
Y.
,
Zhang
,
T.
,
Zheng
,
X.
, and
Chen
,
H.
,
2023
, “
Numerical Investigation on Cooling Performance of Multilayer Pyramid Thermoelectric Module
,”
Int. Commun. Heat Mass Transfer
,
143
, p.
106738
.10.1016/j.icheatmasstransfer.2023.106738
21.
Luo
,
D.
,
Wang
,
R.
,
Yu
,
W.
, and
Zhou
,
W.
,
2020
, “
Parametric Study of a Thermoelectric Module Used for Both Power Generation and Cooling
,”
Renewable Energy
,
154
, pp.
542
552
.10.1016/j.renene.2020.03.045
22.
Khalil
,
A. L.
,
Elhassnaoui
,
A.
,
Yadir
,
S.
,
Abdellatif
,
O.
,
Errami
,
Y.
, and
Sahnoun
,
S.
,
2021
, “
Performance Comparison of TEGs for Diverse Variable Leg Geometry With the Same Leg Volume
,”
Energy
,
224
, p.
119967
.10.1016/j.energy.2021.119967
23.
Gong
,
T.
,
Wu
,
Y.
,
Gao
,
L.
,
Zhang
,
L.
,
Li
,
J.
, and
Ming
,
T.
,
2019
, “
Thermo-Mechanical Analysis on a Compact Thermoelectric Cooler
,”
Energy
,
172
, pp.
1211
1224
.10.1016/j.energy.2019.02.014
24.
Xu
,
G.
,
Duan
,
Y.
,
Chen
,
X.
,
Ming
,
T.
, and
Huang
,
X.
,
2020
, “
Effects of Thermal and Electrical Contact Resistances on the Performance of a Multi-Couple Thermoelectric Cooler With Non-Ideal Heat Dissipation
,”
Appl. Therm. Eng.
,
169
, p.
114933
.10.1016/j.applthermaleng.2020.114933
25.
Maduabuchi
,
C.
,
Eneh
,
C.
,
Alrobaian
,
A. A.
, and
Alkhedher
,
M.
,
2023
, “
Deep Neural Networks for Quick and Precise Geometry Optimization of Segmented Thermoelectric Generators
,”
Energy
,
263
, p.
125889
.10.1016/j.energy.2022.125889
26.
Yang
,
W.
,
Xu
,
A.
,
Zhu
,
W.
,
Li
,
Y.
,
Shi
,
Y.
,
Huang
,
L.
,
Li
,
H.
,
Lin
,
W.
, and
Xie
,
C.
,
2024
, “
Performance Improvement and Thermomechanical Analysis of a Novel Asymmetrical Annular Thermoelectric Generator
,”
Appl. Therm. Eng.
,
237
, p.
121804
.10.1016/j.applthermaleng.2023.121804
27.
Ali
,
H.
,
Yilbas
,
B. S.
, and
Al-Sulaiman
,
F. A.
,
2016
, “
Segmented Thermoelectric Generator: Influence of Pin Shape Configuration on the Device Performance
,”
Energy
,
111
, pp.
439
452
.10.1016/j.energy.2016.06.003
28.
Liu
,
H. B.
,
Meng
,
J. H.
,
Wang
,
X. D.
, and
Chen
,
W. H.
,
2018
, “
A New Design of Solar Thermoelectric Generator With Combination of Segmented Materials and Asymmetrical Legs
,”
Energy Convers. Manage.
,
175
, pp.
11
20
.10.1016/j.enconman.2018.08.095
29.
Erturun
,
U.
,
Erermis
,
K.
, and
Mossi
,
K.
,
2014
, “
Effect of Various Leg Geometries on Thermo-Mechanical and Power Generation Performance of Thermoelectric Devices
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
128
141
.10.1016/j.applthermaleng.2014.07.027
30.
Al-Khamaiseh
,
B.
,
Muzychka
,
Y. S.
, and
Kocabiyik
,
S.
,
2018
, “
Spreading Resistance in Multilayered Orthotropic Flux Channels With Different Conductivities in the Three Spatial Directions
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
7
), p.
071302
.10.1115/1.4038712
You do not currently have access to this content.