For the present work, a numerical simulation of the 100% oxy-firing combustion process inside an industrial aluminum remelting reverb furnace is presented. Three different configurations were analyzed: (i) a staged combustion process with parallel injection jets for oxygen and natural gas, (ii) a staged combustion process with a divergent jet for the oxygen, and (iii) a non-staged combustion process, with parallel jets. In all the cases, the injections were directed towards the aluminum bath, which was maintained at constant temperature. The numerical procedure was based on the finite volume formulation. The κ-ε model of turbulence was selected for simulating the turbulent flow field. The combustion process was calculated based on the finite rate models of Arrhenius and Magnussen, and the Discrete Transfer Radiation model was employed for predicting the radiation heat transfer. The numerical predictions allowed the determination of the flame patterns, species concentration distribution, temperature and velocity fields. This kind of analysis can be a powerful tool for evaluating design options such as the type, number and positioning of the burners. The present work illustrates a preliminary comparison of three types of burners. From the results obtained, the staged combustion process with a divergent jet presented the best configuration, since the flame length was not too long as to damage the refractory wall. Further it presented the largest region with low water vapor concentration close to the aluminum surface.

1.
Goldin
,
G. M.
, and
Menon
,
S. A.
,
1998
, “
Comparison of Scalar PDF Turbulent Combustion Models
,”
Combust. Flame
,
113
(
3
), pp.
442
453
.
2.
Gran
,
I. R.
,
Ertesva^g
,
I. S.
, and
Magnussen
,
B. F.
,
1997
, “
Influence of Turbulence Modeling on Predictions of Turbulent Combustion
,”
AIAA J.
,
35
(
1
), pp.
106
110
.
3.
Ma
,
C. Y.
,
Mahmud
,
T.
,
Gaskell
,
P. H.
, and
Hampartsoumian
,
E.
,
1999
, “
Numerical Predictions of a Turbulent Diffusion Flame in a Cylindrical Combustor Using Eddy Dissipation and Flamelet Combustion Models
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
213
(
7
), pp.
697
705
.
4.
Zimont
,
V.
,
Polifke
,
W.
, and
Bettelini
,
M.
,
1998
, “
An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure
,”
J. Eng. Gas Turbines Power
,
120
(
3
), pp.
526
532
.
5.
Goldin, G., and Choudhury, D., 2001, “Steady State Simulation of a Methane-Air Partially Premixed Turbulent Flame,” 2001 ASME-IMECE, USA, CD-ROM, HTD-24233.
6.
Nieckele, A. O., Naccache, M. F., Gomes, M. S. P., Carneiro, J. N. E., and Serfaty, R., 2001, “Models Evaluations of Combustion Process in a Cylindrical Furnace,” 2001 ASME-IMECE, USA, CD-ROM, HTD 24232.
7.
Song
,
G.
,
Bjorge
,
T.
,
Holen
,
J.
, and
Magnussen
,
B. F.
,
1997
, “
Simulation Of Fluid Flow And Gaseous Radiation Heat Transfer In A Natural Gas-Fired Furnace
,”
Int. J. Numer. Methods Heat Fluid Flow
,
7
, pp.
169
182
.
8.
Hill
,
S. C.
,
Webb
,
B. W.
,
McQuay
,
M. Q.
, and
Newbold
,
J.
,
2000
, “
Numerical Modeling Of An Industrial Glass-Melting Furnace
,”
J. Inst. Energy
,
73
, pp.
2
11
.
9.
Baltasar
,
J.
,
Carvalho
,
M. G.
,
Coelho
,
P.
, and
Costa
,
M.
,
1997
, “
Flue Gas Recirculation in a Gas-Fired Laboratory Furnace: Measurements and Modelling
,”
Flue
,
76
(
20
), pp.
919
929
.
10.
Kremer
,
H.
,
May
,
F.
, and
Wirtz
,
S.
,
2001
, “
The Influence of Furnace Design on the NO Formation in High Temperature Process
,”
Energy Convers. Manage.
,
42
, pp.
1937
1952
.
11.
Nieckele, A. O., Naccache, M. F., Gomes, M. S. P., and Kobayashi, W., 1997, “Numerical Simulation of a Three Dimensional Aluminum Melting Furnace,” Proc. 4th Int. Conf. on Technology and Combustion for a Clean Environment, Portugal, II (36.3), pp. 15–20.
12.
Gomes, M. S. P., Nieckele, A. O., Naccache, M. F., and Kobayashi, W., 1997, “Numerical Investigation of the Oxygen Enriched Combustion Process in a Cylindrical Furnace,” Proc. 4th Int. Conf. on Technology and Combustion for a Clean Environment, Portugal, II (36.1), pp. 1–5.
13.
Nieckele, A. O., Naccache, M. F., Gomes, M. S. P., and Kobayashi, W., 1998, “Numerical Investigation of The Staged Versus Non-Staged Combustion Process in an Aluminum Melting Furnace,” 1998 AIAA/ASME Joint Thermophysics and Heat Transfer Conf., USA, 1, pp. 253–259.
14.
Nieckele, A. O., Naccache, M. F., Gomes, M. S. P., and Kobayashi, W., 1999, “The Influence Of Oxygen Injection Configuration In The Performance Of An Aluminum Melting Furnace,” 1999 ASME-IMECE, USA, Heat Transfer Division, 2, pp. 405–412.
15.
Brewster
,
B. S.
,
Webb
,
B. W.
,
McQuay
,
M. Q.
,
D’Agostini
,
M.
, and
Baukal
,
C. E.
,
2001
, “
Combustion Measurements And Modelling In An Oxygen-Enriched Aluminum-Recycling Furnace
,”
J. Inst. Energy
,
74
, pp.
11
17
.
16.
Mukhopadhyay, A., Puri, I. K., Zelepouga, S., and Rue, D. M., 2001, “Numerical Simulation of Methane-Air Nozzle Burners for Aluminum Remelt Furnaces,” 2001 ASME-IMECE, USA, CD-ROM, HTD-24234.
17.
Ha
,
J.
, and
Zhu
,
Z.
,
1998
, “
Computation of Turbulent Reactive Flows in Industrial Burners
,”
Appl. Math. Model.
,
22
, pp.
1059
1070
.
18.
Zhou
,
X.
,
Sun
,
Z.
,
Durst
,
F.
, and
Brenner
,
G.
,
1999
, “
Numerical Simulation of Turbulent Jet Flow and Combustion
,”
Comput. Math. Appl.
,
38
, pp.
179
191
.
19.
Zhou
,
L. X.
,
Chen
,
X. L.
,
Zheng
,
C. G.
, and
Yin
,
J.
,
2000
, “
Second-Order Moment Turbulence-Chemistry Model for Simulating NOx Formation in Gas Combustion
,”
Fuel
,
79
, pp.
1289
1301
.
20.
Zhou
,
L. X.
,
Qiao
,
L.
,
Chen
,
X. L.
, and
Zhang
,
J.
,
2002
, “
A USM Turbulence-Chemistry Model for Simulating NOx Formation in Turbulent Combustion
,”
Fuel
,
81
, pp.
1703
1709
.
21.
Coelho
,
P. J.
, and
Peters
,
N.
,
2001
, “
Numerical Simulation of a Mild Combustion Burner
,”
Combust. Flame
,
124
, pp.
503
518
.
22.
Veynante
,
D.
, and
Vervisch
,
L.
,
2002
, “
Turbulent Combustion Modeling
,”
Prog. Energy Combust. Sci.
,
28
, pp.
193
266
.
23.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
, pp.
269
289
.
24.
Carvalho, M. G., Farias, T., and Fontes, P., 1991, “Predicting Radiative Heat Transfer in Absorbing, Emitting, and Scattering Media Using the Discrete Transfer Method,” W.A. Fiveland et al., Fundamentals of Radiation Heat Transfer, ASME HTD, 160, pp. 17–26.
25.
Keramida
,
E. P.
,
Liakos
,
H. H.
,
Founti
,
M. A.
,
Boudouvis
,
A. G.
, and
Markatos
,
N. C.
,
2000
, “
Radiative Heat Transfer in Natural Gas-Fired Furnaces
,”
Int. J. Heat Mass Transfer
,
43
, pp.
1801
1809
.
26.
Siegel, R., and Howell, J. R., 1981, Thermal Radiation Heat Transfer, 2nd edition, Hemisphere Publishing Corporation, NY.
27.
Kuo, K. K., 1986, Principles of Combustion, John Wiley & Sons, NY.
28.
Fluent User’s Guide (v.4.3). 1995, Fluent Inc., NH.
29.
Patankar, S. V., and Spalding, D. B., 1967, Heat and Mass Transfer in Boundary Layers, Morgan-Grampian, London.
30.
Smith
,
T. F.
,
Shen
,
Z. F.
, and
Friedman
,
J. N.
,
1982
, “
Evaluation of Coefficients for the Weighted Sum of Gray Gases Model
,”
J. Heat Transfer
,
104
, pp.
602
608
.
31.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, NY.
32.
Hutchinson
,
B. R.
, and
Raithby
,
G. D.
,
1986
, “
A Multigrid Method Based on the Additive Correction Strategy
,”
Numer. Heat Transfer
,
9
, pp.
511
537
.
You do not currently have access to this content.